On the spectra of a Cantor measure

被引:135
作者
Dutkay, Dorin Ervin [1 ]
Han, Deguang [1 ]
Sun, Qiyu [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
Fourier series; Affine fractals; Spectrum; Spectral measure; Hilbert spaces; Attractor; FUGLEDES CONJECTURE; OPERATORS; SYSTEMS;
D O I
10.1016/j.aim.2008.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze all orthonormal bases of exponentials on the Cantor set defined by Jorgensen and Pedersen in J. Anal. Math. 75 (1998) 185-228. A complete characterization for all maximal sets of orthogonal exponentials is obtained by establishing a one-to-one correspondence with the spectral labelings of the infinite binary tree. With the help of this characterization we obtain a sufficient condition for a spectral labeling to generate a spectrum (an orthonormal basis). This result not only provides us an easy and efficient way to construct various of new spectra for the Cantor measure but also extends many previous results in the literature. In fact, most known examples of orthonormal bases of exponentials correspond to spectral labelings satisfying this sufficient condition. We also obtain two new conditions for a labeling tree to generate a spectrum when other digits (digits not necessarily in {0, 1, 2, 3}) are used in the base 4 expansion of integers and when bad branches are allowed in the spectral labeling. These new conditions yield new examples of spectra and in particular lead to a surprizing example which shows that a maximal set of orthogonal exponentials is not necessarily an orthonormal basis. Published by Elsevier Inc.
引用
收藏
页码:251 / 276
页数:26
相关论文
共 21 条
[1]  
[Anonymous], 2001, ANAL FRACTALS
[2]  
Dobric V., 2000, J. Geom. Anal, V10, P417, DOI DOI 10.1007/BF02921943
[3]  
DUTKAY DE, 2006, IBEROAMERICANA, V22, P131
[4]  
Dutkay DE, 2007, J OPERAT THEOR, V58, P269
[5]   Fourier frequencies in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (01) :110-137
[6]   Analysis of orthogonality and of orbits in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (04) :801-823
[7]   Iterated function systems, Ruelle operators, and invariant projective measures [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
MATHEMATICS OF COMPUTATION, 2006, 75 (256) :1931-1970
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]   Dense analytic subspaces in fractal L2-spaces [J].
Jorgensen, PET ;
Pedersen, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :185-228
[10]   FREUD,GEZA AND LACUNARY FOURIER-SERIES [J].
KAHANE, JP .
JOURNAL OF APPROXIMATION THEORY, 1986, 46 (01) :51-57