Legendrian dual surfaces in hyperbolic 3-space

被引:1
作者
Saji, Kentaro [1 ]
Yildirim, Handan [2 ]
机构
[1] Kobe Univ, Grad Sch Sci, Dept Math, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Istanbul Univ, Fac Sci, Dept Math, TR-34134 Istanbul, Turkey
基金
日本学术振兴会;
关键词
Lorentz-Minkowski space; Legendrian dualities; hyperbolic; 3-space; singularities; SPACELIKE HYPERSURFACES; FLAT SURFACES; SLANT GEOMETRY; RULED SURFACES; SINGULARITIES; FRONTS; DUALITIES; LIGHTCONE; MANIFOLDS; R-3;
D O I
10.4064/ap115-3-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider surfaces in hyperbolic 3-space and their duals. We study flat dual surfaces in hyperbolic 3-space by using extended Legendrian dualities between pseudo-hyperspheres in Lorentz-Minkowski 4-space. We define the flatness of a surface in hyperbolic 3-space by the degeneracy of its dual, which is similar to the case of the Gauss map of a surface in Euclidean 3-space. Such surfaces are a kind of ruled surfaces. Moreover, we investigate the singularities of these surfaces and the dualities of the singularities.
引用
收藏
页码:241 / 261
页数:21
相关论文
共 32 条
[1]  
[Anonymous], 2010, PROGR MATH
[2]  
[Anonymous], 1993, Modern Differential Geometry of Curves and Surfaces
[3]  
Arnol'd V. I., 1985, SINGULARITIES DIFFER, V1, P82
[4]   Slant geometry of spacelike hypersurfaces in hyperbolic space and de Sitter space [J].
Asayama, Mikuri ;
Izumiya, Shyuichi ;
Tamaoki, Aiko ;
Yildirim, Handan .
REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (02) :371-400
[5]   DISTANCE FUNCTIONS AND UMBILIC SUB-MANIFOLDS OF HYPERBOLIC SPACE [J].
CECIL, TE ;
RYAN, PJ .
NAGOYA MATHEMATICAL JOURNAL, 1979, 74 (JUL) :67-75
[6]  
Espinar JM, 2009, J EUR MATH SOC, V11, P903
[7]   Singularities of maximal surfaces [J].
Fujimori, Shoichi ;
Saji, Kentaro ;
Umehara, Masaaki ;
Yamada, Kotaro .
MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (04) :827-848
[8]  
Givental A., 1988, ITOGI NAUKI TEKHNIKI, V33, P55
[9]  
Golubitsky M., 1973, GRAD TEXTS MATH, V14
[10]  
Ishikawa GO, 2005, ASIAN J MATH, V9, P133