Optimal Hardy inequalities in cones

被引:16
|
作者
Devyver, Baptiste [1 ]
Pinchover, Yehuda [2 ]
Psaradakis, Georgios [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T IZ2, Canada
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Hardy inequality; minimal growth; positive solutions; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; OPERATORS;
D O I
10.1017/S0308210516000056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open connected cone in R-n with vertex at the origin. Assume that the operator P mu := -Delta - mu/delta(2)(Omega) (x) is subcritical in Omega, where delta(Omega) is the distance function to the boundary of Omega and mu <= 1/ 4. We show that under some smoothness assumption on Omega the improved Hardy-type inequality integral(Omega)vertical bar del phi vertical bar(2) dx - mu integral(Omega) vertical bar phi vertical bar(2) /delta(2)(Omega) dx >= lambda(mu) integral(Omega) vertical bar phi vertical bar(2) /vertical bar x vertical bar(2) dx for all phi epsilon C-0(infinity) (Omega) holds true, and the Hardy-weight lambda( mu)vertical bar x vertical bar(-2) is optimal in a certain definite sense. The constant lambda(mu) > 0 is given explicitly.
引用
收藏
页码:89 / 124
页数:36
相关论文
共 50 条
  • [41] Improved Hardy Inequalities with a Class of Weights
    Canale, Anna
    MATHEMATICS, 2023, 11 (04)
  • [42] On Hardy-type integral inequalities
    冷拓
    冯勇
    AppliedMathematicsandMechanics(EnglishEdition), 2013, 34 (10) : 1297 - 1304
  • [43] Hardy Inequalities in Globally Twisted Waveguides
    Philippe Briet
    Hiba Hammedi
    David Krejčiřík
    Letters in Mathematical Physics, 2015, 105 : 939 - 958
  • [44] On Perturbative Hardy-Type Inequalities
    Gesztesy, Fritz
    Nichols, Roger
    Pang, Michael M. H.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (01) : 128 - 149
  • [45] Critical Hardy-Sobolev inequalities
    Filippas, S.
    Maz'ya, V.
    Terfikas, A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01): : 37 - 56
  • [46] On weighted Hardy inequalities in mixed norms
    D. V. Prokhorov
    V. D. Stepanov
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 149 - 164
  • [47] MULTIPOLAR HARDY INEQUALITIES ON RIEMANNIAN MANIFOLDS
    Faraci, Francesca
    Farkas, Csaba
    Kristaly, Alexandru
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (02) : 551 - 567
  • [48] Weighted hardy inequalities with sharp constants
    Avkhadiev F.G.
    Wirths K.-J.
    Lobachevskii Journal of Mathematics, 2010, 31 (1) : 1 - 7
  • [49] Hardy inequalities for weighted Dirac operator
    Adimurthi
    Tintarev, Kyril
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (02) : 241 - 251
  • [50] Improved hardy inequalities on Riemannian manifolds
    Mohanta, Kaushik
    Tyagi, Jagmohan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (10) : 1770 - 1781