Optimal Hardy inequalities in cones

被引:16
|
作者
Devyver, Baptiste [1 ]
Pinchover, Yehuda [2 ]
Psaradakis, Georgios [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T IZ2, Canada
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Hardy inequality; minimal growth; positive solutions; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; OPERATORS;
D O I
10.1017/S0308210516000056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open connected cone in R-n with vertex at the origin. Assume that the operator P mu := -Delta - mu/delta(2)(Omega) (x) is subcritical in Omega, where delta(Omega) is the distance function to the boundary of Omega and mu <= 1/ 4. We show that under some smoothness assumption on Omega the improved Hardy-type inequality integral(Omega)vertical bar del phi vertical bar(2) dx - mu integral(Omega) vertical bar phi vertical bar(2) /delta(2)(Omega) dx >= lambda(mu) integral(Omega) vertical bar phi vertical bar(2) /vertical bar x vertical bar(2) dx for all phi epsilon C-0(infinity) (Omega) holds true, and the Hardy-weight lambda( mu)vertical bar x vertical bar(-2) is optimal in a certain definite sense. The constant lambda(mu) > 0 is given explicitly.
引用
收藏
页码:89 / 124
页数:36
相关论文
共 50 条
  • [31] Quasilinear elliptic inequalities with Hardy potential and nonlocal terms
    Ghergu, Marius
    Karageorgis, Paschalis
    Singh, Gurpreet
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (03) : 1075 - 1093
  • [32] Best Remainder Norms in Sobolev-Hardy Inequalities
    Cianchi, Andrea
    Ferone, Adele
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) : 1051 - 1096
  • [33] Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities
    Velicu, Andrei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
  • [34] Nonlinear parabolic equations with Robin boundary conditions and Hardy-Leray type inequalities
    Goldstein, Gisele
    Goldstein, Jerome
    Kombe, Ismail
    Balekoglu, Reyhan Tellioglu
    STOCHASTIC PROCESSES AND FUNCTIONAL ANALYSIS: NEW PERSPECTIVES, 2021, 774 : 55 - 70
  • [35] Improving interpolated Hardy and trace Hardy inequalities on bounded domains
    Tzirakis, Konstantinos
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 127 : 17 - 34
  • [36] Fourier analysis and optimal Hardy-Adams inequalities on hyperbolic spaces of any even dimension
    Li, Jungang
    Lu, Guozhen
    Yang, Qiaohua
    ADVANCES IN MATHEMATICS, 2018, 333 : 350 - 385
  • [37] p-Bessel Pairs, Hardy’s Identities and Inequalities and Hardy–Sobolev Inequalities with Monomial Weights
    Nguyen Tuan Duy
    Nguyen Lam
    Guozhen Lu
    The Journal of Geometric Analysis, 2022, 32
  • [38] Optimal weighted Hardy-Rellich inequalities on H2 ∧ H01
    Moradifam, Amir
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 22 - 40
  • [39] Hardy-Rellich inequalities with boundary remainder terms and applications
    Berchio, Elvise
    Cassani, Daniele
    Gazzola, Filippo
    MANUSCRIPTA MATHEMATICA, 2010, 131 (3-4) : 427 - 458
  • [40] Best constants in bipolar Lp Hardy-type inequalities
    Cazacu, Cristian
    Rugina, Teodor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)