Optimal Hardy inequalities in cones

被引:16
作者
Devyver, Baptiste [1 ]
Pinchover, Yehuda [2 ]
Psaradakis, Georgios [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T IZ2, Canada
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Hardy inequality; minimal growth; positive solutions; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; OPERATORS;
D O I
10.1017/S0308210516000056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open connected cone in R-n with vertex at the origin. Assume that the operator P mu := -Delta - mu/delta(2)(Omega) (x) is subcritical in Omega, where delta(Omega) is the distance function to the boundary of Omega and mu <= 1/ 4. We show that under some smoothness assumption on Omega the improved Hardy-type inequality integral(Omega)vertical bar del phi vertical bar(2) dx - mu integral(Omega) vertical bar phi vertical bar(2) /delta(2)(Omega) dx >= lambda(mu) integral(Omega) vertical bar phi vertical bar(2) /vertical bar x vertical bar(2) dx for all phi epsilon C-0(infinity) (Omega) holds true, and the Hardy-weight lambda( mu)vertical bar x vertical bar(-2) is optimal in a certain definite sense. The constant lambda(mu) > 0 is given explicitly.
引用
收藏
页码:89 / 124
页数:36
相关论文
共 38 条
[1]  
AGMON S, 1985, LECT NOTES MATH, V1159, P1
[2]  
Agmon Shmuel., 1982, Mathematical Notes, V29
[3]   NEGATIVELY CURVED MANIFOLDS, ELLIPTIC-OPERATORS, AND THE MARTIN BOUNDARY [J].
ANCONA, A .
ANNALS OF MATHEMATICS, 1987, 125 (03) :495-536
[4]   Positive solutions of Schrodinger equations and fine regularity of boundary points [J].
Ancona, Alano .
MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (1-2) :405-427
[5]   On positive harmonic functions in cones and cylinders [J].
Ancona, Alano .
REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (01) :201-230
[6]  
[Anonymous], INT MATH SERIES
[7]  
[Anonymous], 1983, Methods of functional analysis and theory of elliptic equations
[8]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[9]   Shape sensitivity analysis of the Hardy constant [J].
Barbatis, Gerassimos ;
Lamberti, Pier Domenico .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 :98-112
[10]  
Boyd S, 2004, CONVEX OPTIMIZATION