Optimal Hardy inequalities in cones

被引:16
|
作者
Devyver, Baptiste [1 ]
Pinchover, Yehuda [2 ]
Psaradakis, Georgios [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T IZ2, Canada
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Hardy inequality; minimal growth; positive solutions; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; OPERATORS;
D O I
10.1017/S0308210516000056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open connected cone in R-n with vertex at the origin. Assume that the operator P mu := -Delta - mu/delta(2)(Omega) (x) is subcritical in Omega, where delta(Omega) is the distance function to the boundary of Omega and mu <= 1/ 4. We show that under some smoothness assumption on Omega the improved Hardy-type inequality integral(Omega)vertical bar del phi vertical bar(2) dx - mu integral(Omega) vertical bar phi vertical bar(2) /delta(2)(Omega) dx >= lambda(mu) integral(Omega) vertical bar phi vertical bar(2) /vertical bar x vertical bar(2) dx for all phi epsilon C-0(infinity) (Omega) holds true, and the Hardy-weight lambda( mu)vertical bar x vertical bar(-2) is optimal in a certain definite sense. The constant lambda(mu) > 0 is given explicitly.
引用
收藏
页码:89 / 124
页数:36
相关论文
共 50 条