On a bi-layer shallow-water problem

被引:11
作者
Muñoz-Ruiz, ML
Chatelon, FJ
Orenga, P
机构
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
[2] Univ Corse, Fac Sci & Tech, F-20250 Corte, Corse, France
关键词
shallow-water equations; bi-layer model; nonlinear partial differential equations; A priori estimates; Sobolev and Orlicz spaces;
D O I
10.1016/S1468-1218(02)00019-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove an existence and uniqueness result for a: bi-layer shallow water model in depth-mean velocity formulation. Some smoothness results for the solution are also obtained. In a previous work we proved the same results for a one-layer problem. Now the difficulty arises from the terms coupling the two layers. In order to obtain the energy estimate, we use a special basis which allows us to bound these terms. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:139 / 171
页数:33
相关论文
共 14 条
[1]  
Adams R, 1978, Sobolev spaces
[2]  
Chatelon F.-J., 1998, ADV DIFFERENTIAL EQU, V3, P155
[3]  
CHATELON FJ, 1997, RAIRO-MATH MODEL NUM, V31, P27
[4]  
Girault V., 1979, FINITE ELEMENTS METH
[5]  
Krasnoselksky M.A., 1962, CONVEX FUNCTIONS ORL
[6]  
Kufner A, 1977, FUNCTION SPACES MONO
[7]  
Lions J. L., 1969, QUELQUES METHODES RE
[8]  
Macías J, 1999, INT J NUMER METH FL, V31, P1037, DOI 10.1002/(SICI)1097-0363(19991215)31:7<1037::AID-FLD909>3.0.CO
[9]  
2-V
[10]   EXISTENCE THEOREM FOR SHALLOW-WATER PROBLEM SOLUTIONS [J].
ORENGA, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 130 (02) :183-204