Dissipativity and global attractors for a class of quasilinear parabolic systems.

被引:66
作者
Dung, L
机构
[1] Department of Mathematics, Arizona State University, Tempe
关键词
Sobolev inequalities; iterative method; A-priori estimates; global attractor; reaction diffusion systems;
D O I
10.1080/03605309708821269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a-priori weak L-p dissipativity implies strong L-infinity dissipativity for a class of weakly coupled quasilinear parabolic systems satisfies general structure conditions. The existence of global attractors of general nonlinear reaction diffusion systems will be proven.
引用
收藏
页码:413 / 433
页数:21
相关论文
共 24 条
  • [1] ALIKAKOS N, 1979, J DIFF EQNS, P201
  • [2] Alikakos N.D., 1979, Commun. Partial Differ. Equ., P827, DOI DOI 10.1080/03605307908820113
  • [3] PERMANENCE IN ECOLOGICAL-SYSTEMS WITH SPATIAL HETEROGENEITY
    CANTRELL, RS
    COSNER, C
    HUTSON, V
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 : 533 - 559
  • [4] DiBenedetto E., 1993, Degenerate Parabolic Equations, DOI [DOI 10.1007/978-1-4612-0895-2, 10.1007/978-1-4612-0895-2]
  • [5] DUNG L, EXPONENTIAL ATTRACTO
  • [6] DUNG L, 1996, UNPUB J MATH APPL AN
  • [7] DUNG L, 1996, UNPUB J DIFF EQNS
  • [8] DUNG L, 1996, J DIFF EQNS, P59
  • [9] DUNG L, 1996, UNPUB NONLINEAR ANAL
  • [10] EDEN A, 1995, EXPONENTIAL ATTRACTO