'Spindles' in symmetric spaces

被引:4
作者
Quast, Peter [1 ]
机构
[1] Univ Fribourg, Dept Math, CH-1700 Fribourg, Switzerland
关键词
extrinsic geometry; submanifolds; symmetric spaces; Lie triples;
D O I
10.2969/jmsj/1179759533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study families of submanifolds in symmetric spaces of compact type arising as exponential images of s-orbits of variable radii. If the s-orbit is symmetric such submanifolds are the most important examples of adapted submanifolds, i.e. of submanifolds of symmetric spaces with curvature invariant tangent and normal spaces.
引用
收藏
页码:985 / 994
页数:10
相关论文
共 12 条
[1]  
Berndt J., 2003, SUBMANIFOLDS HOLONOM
[2]   TOTALLY GEODESIC SUB-MANIFOLDS OF SYMMETRIC SPACES .2. [J].
CHEN, BY ;
NAGANO, T .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (02) :405-425
[3]   A RIEMANNIAN GEOMETRIC INVARIANT AND ITS APPLICATIONS TO A PROBLEM OF BOREL AND SERRE [J].
CHEN, BY ;
NAGANO, T .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (01) :273-297
[4]   Higher rank curved Lie triples [J].
Eschenburg, JH .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (03) :551-564
[5]   SYMMETRIC SUB-MANIFOLDS OF EUCLIDEAN-SPACE [J].
FERUS, D .
MATHEMATISCHE ANNALEN, 1980, 247 (01) :81-93
[6]  
Friedrich T, 2000, DIRAC OPERATORS RIEM
[7]  
Helgason S., 1979, Differential geometry, Lie groups and symmetric spaces
[8]  
KOBAYASHI S, 1964, J MATH MECH, V13, P875
[9]  
Nagano Tadashi, 2000, TOKYO J MATH, V23, P403, DOI DOI 10.3836/TJM/1255958679
[10]   Grassmann geometries on compact symmetric spaces of general type [J].
Naitoh, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (03) :557-592