Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations

被引:71
作者
Karagoz, Pinar [1 ]
Bill, Roslyn M. [1 ]
Ozkan, Melek [2 ]
机构
[1] Aston Univ, Sch Life & Hlth Sci, Birmingham B4 7ET, W Midlands, England
[2] Gebze Tech Univ, Environm Engn Dept, TR-41400 Gebze, Turkey
基金
英国生物技术与生命科学研究理事会;
关键词
Cellulosic ethanol; Fermentation; Co-fermentation; Immobilization; Immobilized cell reactors; MUNICIPAL SOLID-WASTE; SACCHAROMYCES-CEREVISIAE; BIOETHANOL PRODUCTION; SIMULTANEOUS SACCHARIFICATION; ENZYMATIC SACCHARIFICATION; XYLOSE FERMENTATION; CELLULOSIC ETHANOL; ZYMOMONAS-MOBILIS; PICHIA-STIPITIS; FUEL ETHANOL;
D O I
10.1016/j.renene.2019.05.045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The environmentally-friendly, economically-viable production of ethanol from cellulosic biomass remains a major contemporary challenge. Much work has been done on the disruption of cellulosic biomass structure, the production of enzymes for the conversion of cellulose and hemicellulose into simple sugars that can be fermented by bacteria or yeast, and the metabolic engineering of ethanol producing microbes. The results of these studies have enabled the transition from laboratory to industrial scale of cellulosic ethanol production. Notably, however, current processes use free microbial cells in batch reactors. This review highlights the advantages of using immobilized and co-immobilized cells together with continuous bioreactor configurations. These developments have the potential to improve both the yield and the green credentials of cellulosic ethanol production in modern industrial settings. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:741 / 752
页数:12
相关论文
共 174 条
[1]   Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): Fermentation behaviour [J].
Abbi, M ;
Kuhad, RC ;
Singh, A .
PROCESS BIOCHEMISTRY, 1996, 31 (06) :555-560
[2]   Solving ethanol production problems with genetically modified yeast strains [J].
Abreu-Cavalheiro, A. ;
Monteiro, G. .
BRAZILIAN JOURNAL OF MICROBIOLOGY, 2013, 44 (03) :665-671
[3]   Second generation bioethanol production: A critical review [J].
Aditiya, H. B. ;
Mahlia, T. M. I. ;
Chong, W. T. ;
Nur, Hadi ;
Sebayang, A. H. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 66 :631-653
[4]   Fermentation of glucose/xylose mixtures using Pichia stipitis [J].
Agbogbo, Frank K. ;
Coward-Kelly, Guillermo ;
Torry-Smith, Mads ;
Wenger, Kevin S. .
PROCESS BIOCHEMISTRY, 2006, 41 (11) :2333-2336
[5]  
Aita G., 2011, BIORESOURCE TECHNOL, V102, P1133
[6]   Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF) [J].
Akhtar, Nadeem ;
Goyal, Dinesh ;
Goyal, Arun .
ENERGY CONVERSION AND MANAGEMENT, 2017, 141 :133-144
[7]   Sugar beet ethanol (Beta vulgaris L.): A promising low-carbon pathway for ethanol production in California [J].
Alexiades, Anthy ;
Kendall, Alissa ;
Winans, Kiara S. ;
Kaffka, Stephen R. .
JOURNAL OF CLEANER PRODUCTION, 2018, 172 :3907-3917
[8]  
Almeida N. C. de, 2016, Journal of Agricultural Biotechnology and Sustainable Development, V8, P7
[9]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861