The interfacial bilayer Cu6Sn5 formed in a Sn-Ag-Cu flip-chip solder joint incorporating Au/Pd metallization during solid-state aging

被引:6
作者
Liang, Chien-Lung [1 ]
Lin, Kwang-Lung [1 ]
Cheng, Po-Jen [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, 1 Univ Rd, Tainan 70101, Taiwan
[2] Adv Semicond Engn ASE Grp, 26,Chin 3rd Rd, Kaohsiung 81170, Taiwan
关键词
LEAD-FREE SOLDERS; ELECTROLESS NI-P; INTERMETALLIC COMPOUNDS; TIO2; NANOPARTICLES; IMC GROWTH; COMPOUND; ALLOYS; AUSN4; AU; REDEPOSITION;
D O I
10.1007/s10854-018-9665-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A solid-state reaction between the Sn-Ag-Cu solder and Ni metallization resulted in the formation of interfacial bilayer Cu6Sn5-based intermetallic compounds (IMCs) in a solder joint incorporating Au/Pd metallization. The layer near the Ni metallization was identified as (Cu,Ni,Au)(6)Sn-5 containing 20.3 at.% of Ni and 1.7 at.% of Au, and the layer near the solder matrix was identified as (Cu,Au,Ni,Pd)(6)Sn-5 containing 5.7 at.% of Au, 1.2 at.% of Ni, and 1.0 at.% of Pd. The electron diffraction analysis with high resolution transmission electron microscopy further characterized the interfacial bilayer IMCs as having the same hexagonal crystal structure with different crystal orientations. The kinetics study revealed that the (Cu,Ni,Au)(6)Sn-5 in the interfacial bilayer reaction products was formed during the initial reflow process, while the (Cu,Au,Ni,Pd)(6)Sn-5 layer was formed during subsequent solid-state aging. Predominant growth of the (Cu,Au,Ni,Pd)(6)Sn-5 layer was observed during solid-state aging. In contrast, the growth of the initially formed (Cu,Ni,Au)(6)Sn-5 layer was suppressed. The growth of the (Cu,Au,Ni,Pd)(6)Sn-5 layer was governed by the dissolution of the (Au,Pd)Sn-4 IMC that occurred during solid-state aging. The complete dissolution of (Au,Pd)Sn-4 resulted in a reactant-limited chemical reaction from the conversion of (Au,Pd)Sn-4 to (Cu,Au,Ni,Pd)(6)Sn-5. The development of the interfacial bilayer IMCs in the solder joint incorporating Au/Pd metallization suppressed excessive IMC growth and unfavorable phase transformation during long-term solid-state aging. The detailed mechanism of the formation of the interfacial bilayer Cu6Sn5-based IMCs was investigated in this paper.
引用
收藏
页码:15233 / 15240
页数:8
相关论文
共 33 条
  • [31] Effects of Temperature and Current Density on (Au, Pd, Ni)Sn4 Redistribution and Ni-P Consumption in Ni/Sn3.0Ag0.5Cu/ENEPIG Flip Chip Solder Joints
    Chen, Leida
    Feng, Yi
    Liu, Xiaoyan
    Huang, Mingliang
    2013 14TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2013, : 1064 - +
  • [32] Extremely rapid grain growth in scallop-type Cu6Sn5 during solid-liquid interdiffusion reactions in micro-bump solder joints
    Gusak, A. M.
    Tu, K. N.
    Chen, Chih
    SCRIPTA MATERIALIA, 2020, 179 : 45 - 48
  • [33] Effect of in-situ formed Pr-coated Al2O3 nanoparticles on interfacial microstructure and shear behavior of Sn-0.3Ag-0.7Cu-0.06Pr/Cu solder joints during isothermal aging
    Wu, Jie
    Xue, Songbai
    Wang, Jingwen
    Wu, Mingfang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 799 : 124 - 136