Factorizations into idempotent factors of matrices over Prufer domains

被引:6
作者
Cossu, Laura [1 ]
Zanardo, Paolo [1 ]
机构
[1] Dipartimento Matemat Tullio Levi Civita, Padua, Italy
关键词
Factorization of matrices; idempotent matrices; elementary matrices; Prufer domains; ELEMENTARY MATRICES; SINGULAR MATRICES; PRODUCTS;
D O I
10.1080/00927872.2018.1523419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical problem that goes back to the 1960's, is to characterize the integral domains R satisfying the property (IDn): every singular nxn matrix over R is a product of idempotent matrices. Significant results in [18, 21] and [5] motivated a natural conjecture, proposed by Salce and Zanardo [22]: (C) an integral domain R satisfying (ID2) is necessarily a Bezout domain. Unique factorization domains, projective-free domains and PRINC domains (cf. [22]) verify the conjecture. We prove that an integral domain R satisfying (ID2) must be a Prufer domain in which every invertible 2x2 matrix is a product of elementary matrices. Then we show that a large class of coordinate rings of plane curves and the ring of integer-valued polynomials Int() verify an equivalent formulation of (C).
引用
收藏
页码:1818 / 1828
页数:11
相关论文
共 23 条
[1]   DECOMPOSITIONS INTO PRODUCTS OF IDEMPOTENTS [J].
Alahmadi, A. ;
Jain, S. K. ;
Leroy, A. ;
Sathaye, A. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 29 :74-88
[2]   Quasi-permutation singular matrices are products of idempotents [J].
Alahmadi, Adel ;
Jain, S. K. ;
Leroy, Andre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 496 :487-495
[3]   Euclidean pairs and quasi-Euclidean rings [J].
Alahmadi, Adel ;
Jain, S. K. ;
Lam, T. Y. ;
Leroy, A. .
JOURNAL OF ALGEBRA, 2014, 406 :154-170
[4]   Decomposition of singular matrices into idempotents [J].
Alahmadi, Adel ;
Jain, S. K. ;
Leroy, Andre .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (01) :13-27
[5]  
Cahen P.-J., 1997, AM MATH SOC SURVEYS, V48
[6]   A PRUFER RING [J].
CHABERT, JL .
JOURNAL OF ALGEBRA, 1987, 107 (01) :1-16
[7]  
Cohn P. M., 1966, PUBL MATH-PARIS, V30, P5
[8]   Products of elementary matrices and non-Euclidean principal ideal domains [J].
Cossu, L. ;
Zanardo, P. ;
Zannier, U. .
JOURNAL OF ALGEBRA, 2018, 501 :182-205
[9]   ON PRODUCTS OF IDEMPOTENT MATRICES [J].
ERDOS, JA .
GLASGOW MATHEMATICAL JOURNAL, 1967, 8 :118-&
[10]   Elementary matrices and products of idempotents [J].
Facchini, A. ;
Leroy, A. .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10) :1916-1935