The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance

被引:218
作者
Mishina, Tatiana E. [1 ]
Zeier, Juergen [1 ]
机构
[1] Univ Wurzburg, Julius von Sachs Inst Biol Sci, D-97082 Wurzburg, Germany
关键词
D O I
10.1104/pp.106.081257
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Upon localized attack by necrotizing pathogens, plants gradually develop increased resistance against subsequent infections at the whole-plant level, a phenomenon known as systemic acquired resistance (SAR). To identify genes involved in the establishment of SAR, we pursued a strategy that combined gene expression information from microarray data with pathological characterization of selectedArabidopsis ( Arabidopsis thaliana) T-DNA insertion lines. A gene that is up-regulated in Arabidopsis leaves inoculated with avirulent or virulent strains of the bacterial pathogen Pseudomonas syringae pv maculicola (Psm) showed homology to flavin-dependent monooxygenases (FMO) and was designated as FMO1. An Arabidopsis knockout line of FMO1 proved to be fully impaired in the establishment of SAR triggered by a virulent (Psm avrRpm1) or virulent ( Psm) bacteria. Loss of SAR in the fmo1 mutants was accompanied by the inability to initiate systemic accumulation of salicylic acid ( SA) and systemic expression of diverse defense-related genes. In contrast, responses at the site of pathogen attack, including increases in the levels of the defense signals SA and jasmonic acid, camalexin accumulation, and expression of various defense genes, were induced in a similar manner in both fmo1 mutant and wild-type plants. Consistently, the fmo1 mutation did not significantly affect local disease resistance toward virulent or avirulent bacteria in naive plants. Induction of FMO1 expression at the site of pathogen inoculation is independent of SA signaling, but attenuated in the Arabidopsis eds1 and pad4 defensemutants. Importantly, FMO1 expression is also systemically induced upon localized P. syringae infection. This systemic up-regulation is missing in the SAR-defective SA pathway mutants sid2 and npr1, as well as in the defense mutant ndr1, indicating a close correlation between systemic FMO1 expression and SAR establishment. Our findings suggest that the presence of the FMO1 gene product in systemic tissue is critical for the development of SAR, possibly by synthesis of a metabolite required for the transduction or amplification of a signal during the early phases of SAR establishment in systemic leaves.
引用
收藏
页码:1666 / 1675
页数:10
相关论文
共 52 条
[1]   Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J].
Aarts, N ;
Metz, M ;
Holub, E ;
Staskawicz, BJ ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10306-10311
[2]   Vitamin B1 functions as an activator of plant disease resistance [J].
Ahn, IP ;
Kim, S ;
Lee, YH .
PLANT PHYSIOLOGY, 2005, 138 (03) :1505-1515
[3]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[4]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[5]   Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7 [J].
Bartsch, M ;
Gobbato, E ;
Bednarek, P ;
Debey, S ;
Schultze, JL ;
Bautor, J ;
Parker, JE .
PLANT CELL, 2006, 18 (04) :1038-1051
[6]   A DISEASE RESISTANCE GENE IN ARABIDOPSIS WITH SPECIFICITY FOR 2 DIFFERENT PATHOGEN AVIRULENCE GENES [J].
BISGROVE, SR ;
SIMONICH, MT ;
SMITH, NM ;
SATTLER, A ;
INNES, RW .
PLANT CELL, 1994, 6 (07) :927-933
[7]   The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].
Bowling, SA ;
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1997, 9 (09) :1573-1584
[8]   Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense [J].
Brodersen, P ;
Petersen, M ;
Pike, HM ;
Olszak, B ;
Skov, S ;
Odum, N ;
Jorgensen, LB ;
Brown, RE ;
Mundy, J .
GENES & DEVELOPMENT, 2002, 16 (04) :490-502
[9]   BIOLOGICALLY INDUCED SYSTEMIC ACQUIRED-RESISTANCE IN ARABIDOPSIS-THALIANA [J].
CAMERON, RK ;
DIXON, RA ;
LAMB, CJ .
PLANT JOURNAL, 1994, 5 (05) :715-725
[10]   NDR1, A LOCUS OF ARABIDOPSIS-THALIANA THAT IS REQUIRED FOR DISEASE RESISTANCE TO BOTH A BACTERIAL AND A FUNGAL PATHOGEN [J].
CENTURY, KS ;
HOLUB, EB ;
STASKAWICZ, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6597-6601