Nonstoichiometric (La0.95Sr0.05)xGa0.9Mg0.1O3-δ electrolytes and Ce0.8Nd0.2O1.9-(La0.95Sr0.05)xGa0.9Mg0.1O3-δ composite electrolytes for solid oxide fuel cells

被引:16
作者
Wang, X. P. [1 ]
Zhou, D. F. [1 ]
Yang, G. C. [1 ]
Sun, S. C. [1 ]
Li, Z. H. [1 ]
Fu, H. [1 ]
Meng, J. [2 ]
机构
[1] Changchun Univ Technol, Sch Chem & Life Sci, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resources Utilizat, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonstoichiometry; Composite electrolytes; La0.95Sr0.05Ga0; 9Mg0.1O3-delta; Ce0.8Nd0; 2O1.9; Ionic conductivity; Solid oxide fuel cells; GRAIN-BOUNDARY CONDUCTION; MAGNESIUM-DOPED LAGAO3; ION CONDUCTOR; ELECTRICAL-CONDUCTIVITY; CERIA; STRONTIUM; CERAMICS; MICROSTRUCTURE; PERFORMANCE;
D O I
10.1016/j.ijhydene.2013.10.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A-site nonstoichiometric electrolytes (La0.95Sr0.05)(x)Ga0.9Mg0.1O3-delta (LSGM, x = 0.97, 1.00, 1.03), and their composites Ce0.8Nd0.2O1 9 (NDC)-LSGM, were synthesized and investigated. The nonstoichiometry efficiently enhanced the total conductivity of LSGM electrolyte, and the A-site deficient composition showed the highest total conductivity above 550 degrees C (sigma(t,LSGM(x=0.97)) = 0.880 S m(-1) > sigma(t,LSGM(x=1.03)) = 0.808 S m(-1) > sigma(t,LSGM(x=1.00)) = 0.582 S m(-1) at 600 degrees C). The cubic fluorite and perovskite structures were adopted by all the composites. The LSGM additive significantly promoted the grain growth of the composite electrolyte. The grain boundary conductivities of the composite electrolytes were more or less 5-10 times higher than that of NDC electrolyte at 500 degrees C. The optimum A-site nonstoichiometry was found to be x = 0.97 in composite electrolytes. This study provides a possible route to design high performance single phase or composite electrolytes for SOFCs. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1005 / 1013
页数:9
相关论文
共 46 条
[1]   Electronic transport in Ce0.8Sm0.2O1.9-δ ceramics under reducing conditions [J].
Abrantes, JCC ;
Pérez-Coll, D ;
Núñez, P ;
Frade, JR .
ELECTROCHIMICA ACTA, 2003, 48 (19) :2761-2766
[2]   Material properties of La0.8Sr0.2Ga9+xMg0.1O3-δ as a function of Ga content [J].
Ahmad-Khanlou, A ;
Tietz, F ;
Stöver, D .
SOLID STATE IONICS, 2000, 135 (1-4) :543-547
[3]   Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments [J].
Badwal, SPS ;
Ciacchi, FT ;
Drennan, J .
SOLID STATE IONICS, 1999, 121 (1-4) :253-262
[4]   Enhancement of grain-boundary conduction in gadolinia-doped ceria by the scavenging of highly resistive siliceous phase [J].
Cho, Yoon Ho ;
Cho, Pyeong-Seok ;
Auchterlonie, Graeme ;
Kim, Doo Kang ;
Lee, Jong-Heun ;
Kim, Doh-Yeon ;
Park, Hyun-Min ;
Drennan, John .
ACTA MATERIALIA, 2007, 55 (14) :4807-4815
[5]   Co-doped ceria-based solid solution in the CeO2-M2O3-CaO, M = Sm, Gd system [J].
Dudek, Magdalena ;
Rapacz-Kmita, Alicja ;
Mroczkowska, Maja ;
Mosialek, Michal ;
Mordarski, Grzegorz .
ELECTROCHIMICA ACTA, 2010, 55 (14) :4387-4394
[6]   Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells [J].
Fan, Liangdong ;
Wang, Chengyang ;
Chen, Mingming ;
Zhu, Bin .
JOURNAL OF POWER SOURCES, 2013, 234 :154-174
[7]   Influence of A-site nonstoichiometry on microstructure and electrical properties of (La0.9Sr0.1)xGa0.8Mg0.2O3-δ(x=0.97, 1.00, 1.03) electrolyte materials [J].
Fan Weiyan ;
Zhou Defeng ;
Zhao Guichun ;
Xia Yanjie ;
Meng Jian .
SOLID STATE SCIENCES, 2011, 13 (01) :110-114
[8]  
FENG M, 1994, EUR J SOL STATE INOR, V31, P663
[9]   Blocking grain boundaries in yttria-doped and undoped ceria ceramics of high purity [J].
Guo, X ;
Sigle, W ;
Maier, J .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2003, 86 (01) :77-87
[10]   Low-temperature sintering and electrical properties of strontium- and magnesium-doped lanthanum gallate with V2O5 additive [J].
Ha, Sang Bu ;
Cho, Yoon Ho ;
Ji, Ho-Il ;
Lee, Jong-Ho ;
Kang, Yun Chan ;
Lee, Jong-Heun .
JOURNAL OF POWER SOURCES, 2011, 196 (06) :2971-2978