Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: Covalent surface modification versus interlayer interaction

被引:29
作者
Gan, Xiaorong [1 ]
Zhao, Huimin [2 ]
Lei, Dangyuan [3 ]
Wang, Peifang [1 ]
机构
[1] Hohai Univ, Key Lab Integrated Regulat & Resource Dev Shallow, Minist Educ, Coll Environm, Nanjing 210098, Peoples R China
[2] Dalian Univ Technol, Sch Environm Sci & Technol, Minist Educ, Key Lab Ind Ecol & Environm Engn, Dalian 116024, Peoples R China
[3] City Univ Hong Kong, Dept Mat Sci & Engn, 83 Tat Chee Ave, Hong Kong 999077, Peoples R China
基金
国家重点研发计划;
关键词
Interface functionalization; Two-dimensional nanomaterials; Density functional theory calculations; Electrochemistry; Surface chemistry; MOS2 ULTRATHIN NANOSHEETS; HYDROGEN EVOLUTION; 2-DIMENSIONAL MATERIALS; EDGE SITES; INTERCALATION; LAYER; FUNCTIONALIZATION; ELECTRON; DESIGN; RAMAN;
D O I
10.1016/j.jcat.2020.09.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid phase exfoliation (LPE) is a promising method for synthesizing two-dimensional (2D) 2H-MoS2 due to the balance obtained in the resulting yield and quality. Improvements in the electrocatalytic activ-ity of 2D 2H-MoS2 are typically attributed to an increased number of active sites at the plane edges. However, the conclusion need be carefully redefined in the case of LPE, because the covalent surface modification and solvent intercalation between layers can affect the electrocatalytic activity as well. In this study, bulk 2H-MoS2 was exfoliated in three typical solvents, including N, N-dimethyl formamide (DMF), formamide, and 1-methyl-2-pyrrolidinone (NMP), to synthesize 2H-MoS2 nanosheets. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectrum were used to confirm the possibility of surface and interface functionalization of the 2H-MoS2 nanosheets. Further, the effects on the electrocatalytic activity of 2H-MoS2 nanosheets were investigated mainly by density functional theory periodic calculations based on the analysis of electronic energy band structures. The results have demonstrated that 2H-MoS2 nanosheets prepared in formamide exhibit smaller average size and thickness, and higher electrocatalytic activity. The surface functionalization of the 2H-MoS2 nanosheets is indeed generated by Mo-N covalent bonds due to the presence of S vacancies. Such covalent functionalization leads to a slight decrease of energy band gap with 0.03 eV in a (3 x 3 x 1) 2H-MoS2 supercell. In contrast, the interface functionalization formed by the intercalation of solvent molecules (e.g., formamide) between layers can cause a remarkable decrease in the band gap of (1 x 1 x 2) 2H-MoS2, the phase transition from semiconductor to semimetal, higher carrier mobility, and smaller effective mass (m(e) = 0.052 m(0)). (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:424 / 434
页数:11
相关论文
共 47 条
[1]   Charge transfer on the nanoscale: Current status [J].
Adams, DM ;
Brus, L ;
Chidsey, CED ;
Creager, S ;
Creutz, C ;
Kagan, CR ;
Kamat, PV ;
Lieberman, M ;
Lindsay, S ;
Marcus, RA ;
Metzger, RM ;
Michel-Beyerle, ME ;
Miller, JR ;
Newton, MD ;
Rolison, DR ;
Sankey, O ;
Schanze, KS ;
Yardley, J ;
Zhu, XY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (28) :6668-6697
[2]  
[Anonymous], 2009, GAUSSIAN 09 REVISION
[3]   Functionalization of Liquid-Exfoliated Two-Dimensional 2H-MoS2 [J].
Backes, Claudia ;
Berner, Nina C. ;
Chen, Xin ;
Lafargue, Paul ;
LaPlace, Pierre ;
Freeley, Mark ;
Duesberg, Georg S. ;
Coleman, Jonathan N. ;
McDonald, Aidan R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (09) :2638-2642
[4]   Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets [J].
Backes, Claudia ;
Smith, Ronan J. ;
McEvoy, Niall ;
Berner, Nina C. ;
McCloskey, David ;
Nerl, Hannah C. ;
O'Neill, Arlene ;
King, Paul J. ;
Higgins, Tom ;
Hanlon, Damien ;
Scheuschner, Nils ;
Maultzsch, Janina ;
Houben, Lothar ;
Duesberg, Georg S. ;
Donegan, John F. ;
Nicolosi, Valeria ;
Coleman, Jonathan N. .
NATURE COMMUNICATIONS, 2014, 5
[5]   RAMAN STUDIES OF MOS2 AT HIGH-PRESSURE [J].
BAGNALL, AG ;
LIANG, WY ;
MARSEGLIA, EA ;
WELBER, B .
PHYSICA B & C, 1980, 99 (1-4) :343-346
[6]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[7]   Layer-dependent resonant Raman scattering of a few layer MoS2 [J].
Chakraborty, Biswanath ;
Matte, H. S. S. Ramakrishna ;
Sood, A. K. ;
Rao, C. N. R. .
JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (01) :92-96
[8]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[9]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[10]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571