共 50 条
REGULARITY CRITERIA FOR WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM IN GENERAL UNBOUNDED DOMAINS
被引:4
|作者:
Farwig, Reinhard
[1
]
Riechwald, Paul Felix
[1
]
机构:
[1] Tech Univ Darmstadt, Fachbereich Math, Petersenstr 30, D-64289 Darmstadt, Germany
来源:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S
|
2016年
/
9卷
/
01期
关键词:
Navier-Stokes system;
weak solutions;
general unbounded domains;
regularity criteria;
uniqueness;
NONHOMOGENEOUS DATA;
EQUATIONS;
OPERATOR;
D O I:
10.3934/dcdss.2016.9.157
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider weak solutions of the instationary Navier-Stokes system in general unbounded smooth domains Omega subset of R-3 and discuss several criteria to prove that the weak solution is locally or globally in time a strong solution in the sense of Serrin. Since the usual Stokes operator cannot be de fined on all types of unbounded domains we have to replace the space L-q (Omega), q > 2, by (L) over tilde (q) (Omega) = L-q (Omega) boolean AND L-2 (Omega) and Serrin's class L-r (0, T; L-q (Omega)) by L-r (0, T; (L) over tilde (q) (Omega)) where 2 < r < infinity, 3 < q < infinity and 2/r + 3/q = 1.
引用
收藏
页码:157 / 172
页数:16
相关论文