REGULARITY CRITERIA FOR WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM IN GENERAL UNBOUNDED DOMAINS

被引:4
|
作者
Farwig, Reinhard [1 ]
Riechwald, Paul Felix [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Petersenstr 30, D-64289 Darmstadt, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2016年 / 9卷 / 01期
关键词
Navier-Stokes system; weak solutions; general unbounded domains; regularity criteria; uniqueness; NONHOMOGENEOUS DATA; EQUATIONS; OPERATOR;
D O I
10.3934/dcdss.2016.9.157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider weak solutions of the instationary Navier-Stokes system in general unbounded smooth domains Omega subset of R-3 and discuss several criteria to prove that the weak solution is locally or globally in time a strong solution in the sense of Serrin. Since the usual Stokes operator cannot be de fined on all types of unbounded domains we have to replace the space L-q (Omega), q > 2, by (L) over tilde (q) (Omega) = L-q (Omega) boolean AND L-2 (Omega) and Serrin's class L-r (0, T; L-q (Omega)) by L-r (0, T; (L) over tilde (q) (Omega)) where 2 < r < infinity, 3 < q < infinity and 2/r + 3/q = 1.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条