Actions of hedgehog proteins on skeletal cells

被引:30
作者
Iwamoto, M
Enomoto-Iwamoto, M
Kurisu, K
机构
[1] Osaka Univ, Fac Dent, Dept Oral Anat & Dev Biol, Suita, Osaka 565, Japan
[2] Osaka Univ, Fac Dent, Dept Biochem, Suita, Osaka 565, Japan
关键词
sonic hedgehog; Indian hedgehog; chondrogenesis; osteogenesis; cartilage development;
D O I
10.1177/10454411990100040401
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Recent advances in developmental and molecular biology during embryogenesis and organogenesis have provided new insights into the mechanism of bone formation. Members of the hedgehog gene family were initially characterized as patterning factors in embryonic development, but recently they have been shown to regulate skeletal formation in vertebrates. The amino terminal Fragment of Sonic hedgehog (Shh-N), which is an active domain of Shh, has the ability to induce ectopic cartilage and bone formation in vivo. Shh-N stimulates chondrogenic differentiation in cultures of chondrogenic cell line cells in vitro and inhibits chondrogenesis in primary limb bud cells. These findings suggest that the regulation of chondrogenesis by hedgehog proteins depends on the cell populations being studied. Indian hedgehog (Ihh) is prominently expressed in developing cartilage. Ectopic expression of Ihh decreases type X collagen expression and induces the up-regulation of parathyroid hormone-related peptide (PTHrp) gene expression in perichondrium cells. A negative feedback loop consisting of Ihh and PTHrp, induced by Ihh. appears to regulate the rate of chondrocyte maturation. The direct actions of Shh and Ihh on stimulation of osteoblast differentiation are evidenced by the findings that these factors stimulate alkaline phosphatase activity in cultures of pluripotent mesenchymal cell line cells and osteoblastic cells and that these cells express putative receptors of hedgehog proteins. In conclusion, hedgehog proteins seem to be significantly involved in skeletal formation through multiple actions on chondrogenic mesenchymal cells, chondrocytes, and osteogenic cells.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 75 条
[1]  
Aikawa T, 1996, J BONE MINER RES, V11, P544
[2]   Cloning of a mouse smoothened cDNA and expression patterns of hedgehog signalling molecules during chondrogenesis and cartilage differentiation in clonal mouse EC cells, ATDC5 [J].
Akiyama, H ;
Shigeno, C ;
Hiraki, Y ;
Shukunami, C ;
Kohno, H ;
Akagi, M ;
Konishi, J ;
Nakamura, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 235 (01) :142-147
[3]   The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal [J].
Alcedo, J ;
Ayzenzon, M ;
VonOhlen, T ;
Noll, M ;
Hooper, JE .
CELL, 1996, 86 (02) :221-232
[4]   PARATHYROID HORMONE-RELATED PEPTIDE-DEPLETED MICE SHOW ABNORMAL EPIPHYSEAL CARTILAGE DEVELOPMENT ALTERED ENDOCHONDRAL BONE-FORMATION [J].
AMIZUKA, N ;
WARSHAWSKY, H ;
HENDERSON, JE ;
GOLTZMAN, D ;
KARAPLIS, AC .
JOURNAL OF CELL BIOLOGY, 1994, 126 (06) :1611-1623
[5]  
Büscher D, 1998, DEV DYNAM, V211, P88
[6]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[7]   Dual roles for patched in sequestering and transducing hedgehog [J].
Chen, Y ;
Struhl, G .
CELL, 1996, 87 (03) :553-563
[8]   Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function [J].
Chiang, C ;
Ying, LTT ;
Lee, E ;
Young, KE ;
Corden, JL ;
Westphal, H ;
Beachy, PA .
NATURE, 1996, 383 (6599) :407-413
[9]   Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish [J].
Currie, PD ;
Ingham, PW .
NATURE, 1996, 382 (6590) :452-455
[10]   Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours [J].
Dahmane, N ;
Lee, J ;
Robins, P ;
Heller, P ;
Altaba, ARI .
NATURE, 1997, 389 (6653) :876-881