CROP TYPE MAPPING USING MULTI-DATE IMAGERY FROM THE SENTINEL-2 SATELLITES

被引:4
|
作者
Gikov, Alexander [1 ]
Dimitrov, Petar [1 ]
Filchev, Lachezar [1 ]
Roumenina, Eugenia [1 ]
Jelev, Georgi [1 ]
机构
[1] Bulgarian Acad Sci, Inst Space Res & Technol, Acad G Bonchev St,Bl 1, BU-1113 Sofia, Bulgaria
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2019年 / 72卷 / 06期
关键词
remote sensing; Sentinel-2; satellite imagery; crop mapping; maximum likelihood classification; TEST-SITE;
D O I
10.7546/CRABS.2019.06.11
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the results of a crop type mapping exercise conducted in two study areas in Bulgaria and based on data from the Sentinel-2 (S2) satellites. A multi-date maximum likelihood classification approach was used in which nine spectral bands from three cloud-free images, well distributed across the growing season, were used. Validation was performed using field data collected as part of the study and data from the Integrated Administration and Control System (IACS) dataset. Depending on the validation dataset and the study area, an overall accuracy of 74-95% was achieved after the crop type maps were post-processed by mode filtering. Further increase in accuracy may be obtained if parcel boundaries, as defined in the IACS dataset, are used to aggregate the per-pixel classification to a parcel level.
引用
收藏
页码:787 / 795
页数:11
相关论文
共 50 条
  • [21] Mapping of Aluminum Concentration in Bauxite Mining Residues Using Sentinel-2 Imagery
    Kasmaeeyazdi, Sara
    Mandanici, Emanuele
    Balomenos, Efthymios
    Tinti, Francesco
    Bondua, Stefano
    Bruno, Roberto
    REMOTE SENSING, 2021, 13 (08)
  • [22] Mapping burned areas in Thailand using Sentinel-2 imagery and OBIA techniques
    Suwanprasit, Chanida
    Shahnawaz
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium
    Van Tricht, Kristof
    Gobin, Anne
    Gilliams, Sven
    Piccard, Isabelle
    REMOTE SENSING, 2018, 10 (10)
  • [24] Introducing a new index for flood mapping using Sentinel-2 imagery (SFMI)
    Farhadi, Hadi
    Ebadi, Hamid
    Kiani, Abbas
    Asgary, Ali
    COMPUTERS & GEOSCIENCES, 2025, 194
  • [25] Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism
    Gao, Meixiang
    Lu, Tingyu
    Wang, Lei
    SENSORS, 2023, 23 (15)
  • [26] Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery
    Kganyago, Mahlatse
    Mhangara, Paidamwoyo
    Adjorlolo, Clement
    REMOTE SENSING, 2021, 13 (21)
  • [27] Mapping Productivity and Essential Biophysical Parameters of Cultivated Tropical Grasslands from Sentinel-2 Imagery
    Cisneros, Amparo
    Fiorio, Peterson
    Menezes, Patricia
    Pasqualotto, Nieves
    Van Wittenberghe, Shari
    Bayma, Gustavo
    Nogueira, Sandra Furlan
    AGRONOMY-BASEL, 2020, 10 (05):
  • [28] Enhancement of tree canopy cover for the mapping of forest from the Sentinel-2 imagery
    Mishra, Vikash K.
    Soni, Pramod K.
    Pant, Triloki
    Sharma, Sudhir K.
    Thakur, Vinay
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [29] Quantifying Hail Damage in Crops Using Sentinel-2 Imagery
    Ha, Thuan
    Shen, Yanben
    Duddu, Hema
    Johnson, Eric
    Shirtliffe, Steven J.
    REMOTE SENSING, 2022, 14 (04)
  • [30] Exploring the potential of multi-source unsupervised domain adaptation in crop mapping using Sentinel-2 images
    Wang, Yumiao
    Feng, Luwei
    Sun, Weiwei
    Zhang, Zhou
    Zhang, Hanyu
    Yang, Gang
    Meng, Xiangchao
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 2247 - 2265