Dunford-Pettis Properties and Spaces of Operators

被引:4
作者
Ghenciu, Ioana [1 ]
Lewis, Paul [2 ]
机构
[1] Univ Wisconsin, Dept Math, River Falls, WI 54022 USA
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2009年 / 52卷 / 02期
关键词
Dunford-Pettis property; Dunford-Pettis set; basic sequence; complemented spaces of operators; COMPACT-OPERATORS; SETS;
D O I
10.4153/CMB-2009-024-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
J. Elton used an application of Ramsey theory to show that if X is an infinite dimensional Banach space, then c(0) embeds in X, l(1) embeds in X, or there is a subspace of X that fails to have the Dunford-Pettis property. Bessaga and Pelczynski showed that if c(0) embeds in X*, then l(infinity) embeds in X*. Emmanuele and John showed that if co embeds in K(X, Y), then K(X, Y) is not complemented in L(X, Y). Classical results from Schauder basis theory are used in a study of Dunford-Pettis sets and strong Dunford-Pettis sets to extend each of the preceding theorems. The space L(w*) (X*; Y) of w* - w continuous operators is also studied.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 27 条
[1]   DUNFORD-PETTIS SETS IN THE SPACE OF BOCHNER INTEGRABLE FUNCTIONS [J].
ANDREWS, KT .
MATHEMATISCHE ANNALEN, 1979, 241 (01) :35-41
[2]  
Bator E., 1987, B POLISH ACAD SCI MA, V37, P409
[3]  
Bator E., 1998, C MATH, V78, P1, DOI DOI 10.4064/CM-78-1-1-17
[4]  
Bator E. M., 2002, Bulletin of the Polish Academy of Sciences, Technical Sciences, V50, P413
[5]  
Bessaga C., 1958, STUD MATH, V17, P151
[6]  
BILYEU R, 1981, MEASURE THEORY ITS A, P165
[7]  
BROOKS JK, 1974, T AM MATH SOC, V192, P139, DOI 10.2307/1996826
[8]  
Diestel J., 1980, CONT MATH, V2, P15
[9]  
DIESTEL J, 1984, GRADUATE TEXTS MATH, V92
[10]  
Diestel J., 1977, Vector Measures, Mathematical surveys and monographs, V15