Elastic nonlinear stability analysis of thin rectangular plates through a semi-analytical approach

被引:21
|
作者
Shufrin, I. [2 ]
Rabinovitch, O. [1 ]
Eisenberger, M. [1 ]
机构
[1] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel
[2] Univ Western Australia, Sch Mech Engn, Crawley, WA 6009, Australia
关键词
Extended Kantorovich method; Semi-analytical approach; Geometrically nonlinear stability analysis; Parameter continuation; Arc-length continuation; LARGE DEFLECTION ANALYSIS; FINITE STRIP METHOD; LAMINATED PLATES; POSTBUCKLING ANALYSIS; COMPOSITE PLATES; COMPRESSION;
D O I
10.1016/j.ijsolstr.2008.06.022
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A semi-analytical approach to the elastic nonlinear stability analysis of rectangular plates is developed. Arbitrary boundary conditions and general out-of-plane and in-plane loads are considered. The geometrically nonlinear formulation for the elastic rectangular plate is derived using the thin plate theory with the nonlinear von Karman strains and the variational multi-term extended Kantorovich method. Emphasis is placed on the effect of destabilizing loads and on the derivation of the solution methodologies required for tracking a highly nonlinear equilibrium path, namely: parameter continuation and arc-length continuation procedures. These procedures, which are commonly used for the solution of discretized structural systems governed by nonlinear algebraic equations, are augmented and generalized for the direct application to the PDE. The boundary value problem that results from the arc-length continuation scheme and consists of coupled differential, integral, and algebraic equations is re-formulated in a form that allows the use of standard numerical BVP solvers. The performance of the continuation procedures and the convergence of the multi-term extended Kantorovich method are examined through the solution of the two-dimensional Bratu-Gelfand benchmark problem. The applicability of the proposed approach to the tracking of the nonlinear equilibrium path in the post-buckling range is demonstrated through numerical examples of rectangular plates with various boundary conditions. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2075 / 2092
页数:18
相关论文
共 50 条