Average behavior of Fourier coefficients of Maass cusp forms for hyperbolic -manifolds

被引:0
作者
Jiang, Yujiao [1 ]
Lu, Guangshi [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2015年 / 178卷 / 02期
基金
中国国家自然科学基金;
关键词
Fourier coefficients; Maass cusp forms; Hyperbolic; 3-manifolds; RAMANUJAN CONJECTURE; PLANCHEREL MEASURES; EULER PRODUCTS; SERIES; CLASSIFICATION;
D O I
10.1007/s00605-015-0766-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(phi)(n) be the n-th Fourier coefficient of a doubly even and normalized Hecke-Maass cusp form for hyperbolic 3-manifolds. In this paper, we investigate the behavior of summatory functions in the following (i) the j-th power sum of lambda(phi)(n) Sigma(N(n)<= x)lambda(phi)(n)(j), where j <= 8; (ii) the sum of lambda(phi)(n) over the sparse sequence n(l) Sigma(N(n)<= x)lambda(phi)(n)(l), where l <= 4; (iii) the hybrid sum for lambda(phi)(n) Sigma(N(n)<= x)lambda(phi)(n(l))(j), where 2 <= l <= 4, j = 2, or l = 2, j = 4.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 25 条
[22]  
SHIMURA G, 1975, P LOND MATH SOC, V31, P79
[23]  
Steil G., 1999, EMERGING APPL NUMBER, V109, P617
[24]   CERTAIN DIRICHLET SERIES ATTACHED TO AUTOMORPHIC-FORMS OVER IMAGINARY QUADRATIC FIELDS [J].
ZHAO, YD .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (03) :695-724
[25]  
[No title captured]