Average behavior of Fourier coefficients of Maass cusp forms for hyperbolic -manifolds

被引:0
作者
Jiang, Yujiao [1 ]
Lu, Guangshi [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2015年 / 178卷 / 02期
基金
中国国家自然科学基金;
关键词
Fourier coefficients; Maass cusp forms; Hyperbolic; 3-manifolds; RAMANUJAN CONJECTURE; PLANCHEREL MEASURES; EULER PRODUCTS; SERIES; CLASSIFICATION;
D O I
10.1007/s00605-015-0766-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(phi)(n) be the n-th Fourier coefficient of a doubly even and normalized Hecke-Maass cusp form for hyperbolic 3-manifolds. In this paper, we investigate the behavior of summatory functions in the following (i) the j-th power sum of lambda(phi)(n) Sigma(N(n)<= x)lambda(phi)(n)(j), where j <= 8; (ii) the sum of lambda(phi)(n) over the sparse sequence n(l) Sigma(N(n)<= x)lambda(phi)(n)(l), where l <= 4; (iii) the hybrid sum for lambda(phi)(n) Sigma(N(n)<= x)lambda(phi)(n(l))(j), where 2 <= l <= 4, j = 2, or l = 2, j = 4.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 25 条
[1]   On the Ramanujan conjecture over number fields [J].
Blomer, Valentin ;
Brumley, Farrell .
ANNALS OF MATHEMATICS, 2011, 174 (01) :581-605
[2]   FUNCTIONAL EQUATIONS WITH MULTIPLE GAMMA FACTORS AND AVERAGE ORDER OF ARITHMETICAL FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHA, R .
ANNALS OF MATHEMATICS, 1962, 76 (01) :93-&
[3]  
Iwaniec H., 2004, Amer. Math. Soc. Colloq. Publ., V53
[4]   ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC-FORMS .2. [J].
JACQUET, H ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (04) :777-815
[5]   ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC REPRESENTATIONS .1. [J].
JACQUET, H ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (03) :499-558
[6]   Estimates of automorphic L-functions in the discriminant-aspect [J].
Kaminishi, C .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (05) :42-46
[7]  
Kim HH, 2002, DUKE MATH J, V112, P177
[8]   Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 [J].
Kim, HH ;
Ramakrishnan, D ;
Sarnak, P .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :139-183
[9]   Functorial products for GL2xGL3 and the symmetric cube for GL2 [J].
Kim, HH ;
Shahidi, F .
ANNALS OF MATHEMATICS, 2002, 155 (03) :837-883
[10]   The first eigenvalue problem and tensor products of zeta functions [J].
Koyama, S .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (05) :35-39