Schrodinger-Chern-Simons vortex dynamics

被引:10
作者
Krusch, S [1 ]
Sutcliffe, P [1 ]
机构
[1] Univ Kent, Inst Math, Canterbury CT2 7NF, Kent, England
关键词
D O I
10.1088/0951-7715/19/7/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the motion of vortices in the planar Ginzburg-Landau model with Schrodinger-Chern-Simons dynamics. We compare the moduli space approximation with the results of numerical simulations of the full field theory and find that there is agreement if the coupling constant is very close to the critical value separating type I from type II superconductors. However, there are significant qualitative differences even for modest deviations from the critically coupled regime. Radiation effects produce forces which are of the same order of magnitude as the intervortex force and therefore have a significant impact on vortex motion. We conclude that the moduli space approximation does not provide a good description of the dynamics in this regime.
引用
收藏
页码:1515 / 1534
页数:20
相关论文
共 16 条
[1]   EFFECTIVE LAGRANGIANS FOR BCS SUPERCONDUCTORS AT T=O [J].
AITCHISON, IJR ;
AO, P ;
THOULESS, DJ ;
ZHU, XM .
PHYSICAL REVIEW B, 1995, 51 (10) :6531-6535
[2]   Unstable manifolds and Schrodinger dynamics of Ginzburg-Landau vortices [J].
Lange, O ;
Schroers, BJ .
NONLINEARITY, 2002, 15 (05) :1471-1488
[3]  
Manton N. S., 2004, TOPOLOGICAL SOLITONS
[4]   Asymptotic interactions of critically coupled vortices [J].
Manton, NS ;
Speight, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :535-555
[5]   EFFECTIVE LAGRANGIAN FOR SOLITONS [J].
MANTON, NS .
NUCLEAR PHYSICS B, 1979, 150 (2-3) :397-412
[6]   First order vortex dynamics [J].
Manton, NS .
ANNALS OF PHYSICS, 1997, 256 (01) :114-131
[7]   The Ginzburg-Landau equation III. Vortex dynamics [J].
Ovchinnikov, YN ;
Sigal, IM .
NONLINEARITY, 1998, 11 (05) :1277-1294
[8]   Long-time behaviour of Ginzburg-Landau vortices [J].
Ovchinnikov, YN ;
Sigal, IM .
NONLINEARITY, 1998, 11 (05) :1295-1309
[9]   Slow Schrodinger dynamics of gauged vortices [J].
Romao, NM ;
Speight, JM .
NONLINEARITY, 2004, 17 (04) :1337-1355
[10]   VORTEX SCATTERING [J].
SAMOLS, TM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (01) :149-179