On the cyclicity of weight-homogeneous centers

被引:19
作者
Gavrilov, Lubomir [2 ]
Gine, Jaume [1 ]
Grau, Maite [1 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Toulouse, Inst Math, UMR 5219, F-31062 Toulouse 9, France
关键词
Weight-homogeneous differential system; Poincare-Pontryagin-Melnikov function; Cyclicity; Nilpotent center; Inverse integrating factor; VECTOR-FIELDS; LIMIT-CYCLES;
D O I
10.1016/j.jde.2009.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be a weight-homogeneous planar polynomial differential system with a center. We find an upper bound of the number of limit cycles which bifurcate from the period annulus of W under a generic polynomial perturbation. We apply this result to a particular family of planar polynomial systems having a nilpotent center without meromorphic first integral. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3126 / 3135
页数:10
相关论文
共 11 条
[1]  
Andreev A., 1958, Trans. Amer. Math. Soc, V8, P187
[2]   Successive derivatives of a first return map, application to the study of quadratic vector fields [J].
Francoise, JP .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :87-96
[3]  
GAVRILOV L, 2005, ANN FAC SCI TOULOUSE, V14, P663
[4]   On second order bifurcations of limit cycles [J].
Iliev, ID .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :353-366
[5]  
Ilyashenko Y., 1969, MAT SBORNIK, V78, P360
[6]  
LI C, 2001, EXTRACTA MATH, V16, P441
[7]   Limit Cycles Bifurcating from the Period Annulus of Quasi-Homogeneous Centers [J].
Li, Weigu ;
Llibre, Jaume ;
Yang, Jiazhong ;
Zhang, Zhifen .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2009, 21 (01) :133-152
[8]  
Llibre J, 2001, DYNAM CONT DIS SER A, V8, P161
[9]  
Perko L., 2001, Differential Equations and Dynamical Systems, Vthird, DOI DOI 10.1007/978-1-4613-0003-8
[10]  
Spivak M.D., 1970, A comprehensive introduction to differential geometry