Three-dimensional metrics as deformations of a constant curvature metric

被引:13
|
作者
Coll, B
Llosa, J
Soler, D
机构
[1] Observ Paris, Dept Astron Fondamentale, CNRS, UMR 8630, F-75014 Paris, France
[2] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
关键词
Riemannian geometry; flat deformation; Cauchy problem;
D O I
10.1023/A:1015391411214
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Any three-dimensional metric g may be locally obtained from a constant curvature metric, h, by a deformation like g = sigmah + epsilon s x s, where sigma and s are respectively a scalar and a one-form, the sign epsilon = +/-1 and a functional relation between sigma and the Riemannian norm of s can be arbitrarily prescribed. The general interest of this result in geometry and physics, and the related open problems, are stressed.
引用
收藏
页码:269 / 282
页数:14
相关论文
共 50 条
  • [1] Three-Dimensional Metrics as Deformations of a Constant Curvature Metric
    B. Coll
    J. Llosa
    D. Soler
    General Relativity and Gravitation, 2002, 34 : 269 - 282
  • [2] Deformations of three-dimensional metrics
    Pugliese, Daniela
    Stornaiolo, Cosimo
    GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (03)
  • [3] Deformations of three-dimensional metrics
    Daniela Pugliese
    Cosimo Stornaiolo
    General Relativity and Gravitation, 2015, 47
  • [4] On three-dimensional constant curvature strings
    Ramos, E
    PHYSICS LETTERS B, 1998, 427 (1-2) : 41 - 46
  • [5] CONFORMAL DEFORMATIONS OF CONIC METRICS TO CONSTANT SCALAR CURVATURE
    Jeffres, Thalia
    Rowlett, Julie
    MATHEMATICAL RESEARCH LETTERS, 2010, 17 (03) : 449 - 465
  • [6] Properties of three-dimensional bubbles of constant mean curvature
    Cox, SJ
    Fortes, MA
    PHILOSOPHICAL MAGAZINE LETTERS, 2003, 83 (04) : 281 - 287
  • [7] Three-dimensional homogeneous critical metrics for quadratic curvature functionals
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Caeiro-Oliveira, S.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (01) : 363 - 378
  • [8] Three-dimensional homogeneous critical metrics for quadratic curvature functionals
    M. Brozos-Vázquez
    E. García-Río
    S. Caeiro-Oliveira
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 363 - 378
  • [9] THREE-DIMENSIONAL DISCRETE CURVATURE FLOWS AND DISCRETE EINSTEIN METRICS
    Ge, Huabin
    Xu, Xu
    Zhang, Shijin
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (01) : 49 - 70
  • [10] Three-dimensional Lorentz metrics and curvature homogeneity of order one
    Bueken, P
    Djoric, M
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (01) : 85 - 103