Fine Land Cover Classification Using Daily Synthetic Landsat-Like Images at 15-m Resolution

被引:17
作者
Chen, Bin [1 ]
Huang, Bo [2 ]
Xu, Bing [3 ]
机构
[1] Beijing Normal Univ, Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
[2] Chinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China
[3] Tsinghua Univ, Ctr Earth Syst Sci, Key Lab Earth Syst Modelling, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Improved adaptive intensity-hue-saturation (IAIHS); land cover classification; spatiotemporal-spectral fusion; spatial and temporal adaptive reflectance fusion model (STARFM); REFLECTANCE FUSION;
D O I
10.1109/LGRS.2015.2453999
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
There is currently no unified remote sensing system available that can simultaneously produce images with fine spatial, temporal, and spectral resolutions. This letter proposes a unified spatiotemporal spectral blending model using Landsat Enhanced Thematic Mapper Plus and Moderate Resolution Imaging Spectroradiometer images to predict synthetic daily Landsat-like data with a 15-m resolution. The results of tests using both simulated and actual data over the Poyang Lake Nature Reserve show that the model can accurately capture the general trend of changes for the predicted period and can enhance the spatial resolution of the data, while at the same time preserving the original spectral information. The proposed model is also applied to improve land cover classification accuracy. The application in Wuhan, Hubei Province shows that the overall classification accuracy is markedly improved. With the integration of dense temporal characteristics, the user and producer accuracies for land cover types are also improved.
引用
收藏
页码:2359 / 2363
页数:5
相关论文
共 25 条
[1]  
Bin Chen, 2014, 2014 Third International Workshop on Earth Observation and Remote Sensing Applications Proceedings of (EORSA), P256, DOI 10.1109/EORSA.2014.6927890
[2]  
Cohen WB, 2004, BIOSCIENCE, V54, P535, DOI 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO
[3]  
2
[4]   Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection [J].
Emelyanova, Irina V. ;
McVicar, Tim R. ;
Van Niel, Thomas G. ;
Li, Ling Tao ;
van Dijk, Albert I. J. M. .
REMOTE SENSING OF ENVIRONMENT, 2013, 133 :193-209
[5]   On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance [J].
Gao, Feng ;
Masek, Jeff ;
Schwaller, Matt ;
Hall, Forrest .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2207-2218
[6]   A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS [J].
Hilker, Thomas ;
Wulder, Michael A. ;
Coops, Nicholas C. ;
Linke, Julia ;
McDermid, Greg ;
Masek, Jeffrey G. ;
Gao, Feng ;
White, Joanne C. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (08) :1613-1627
[7]   Unified fusion of remote-sensing imagery: generating simultaneously high-resolution synthetic spatialtemporalspectral earth observations [J].
Huang, Bo ;
Zhang, Hankui ;
Song, Huihui ;
Wang, Juan ;
Song, Chunqiao .
REMOTE SENSING LETTERS, 2013, 4 (06) :561-569
[8]   Spatiotemporal Reflectance Fusion via Sparse Representation [J].
Huang, Bo ;
Song, Huihui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10) :3707-3716
[9]   Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data [J].
Jia, Kun ;
Liang, Shunlin ;
Zhang, Ning ;
Wei, Xiangqin ;
Gu, Xingfa ;
Zhao, Xiang ;
Yao, Yunjun ;
Xie, Xianhong .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 93 :49-55
[10]   The availability of cloud-free Landsat ETM plus data over the conterminous United States and globally [J].
Ju, Junchang ;
Roy, David P. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (03) :1196-1211