Multisensor fusion for target tracking using sequential Monte Carlo methods

被引:0
|
作者
Vemula, Mahesh [1 ]
Djuric, Petar M. [1 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider the problems of centralized and distributed multisensor filtering from a Bayesian perspective. We present sequential Monte Carlo algorithms for obtaining complete posterior distributions from individual sensor measurements and from individual sensor posterior distributions, respectively. In the latter case, the individual posterior distributions are approximated as Gaussian distributions, where the information being communicated by the sensors are the statistics of the distributions. The posterior distributions obtained by a centralized algorithm are computed either by the fusing of the likelihoods or by combining the moments of the individual sensor posterior distributions. The proposed algorithms are applied to two problems of target tracking (a) using bearings only measurements and (b) using multimodal sensor data. For the problems, we provide the root mean square errors, and for problem (a), we compare them with the posterior Cramer-Rao lower bounds.
引用
收藏
页码:1223 / 1227
页数:5
相关论文
共 50 条
  • [1] Sequential Monte Carlo methods for multiple target tracking and data fusion
    Hue, C
    Le Cadre, JP
    Pérez, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 309 - 325
  • [2] Online target tracking and sensor registration using sequential Monte Carlo methods
    Li, Jack
    Ng, William
    Godsill, Simon
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 55 - 58
  • [3] Multiple target tracking using and statistical sequential Monte Carlo methods data association
    Frank, O
    Nieto, J
    Guivant, J
    Scheding, S
    IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 2718 - 2723
  • [4] Online multiple target tracking and sensor registration using sequential Monte Carlo methods
    Li, Junfeng
    Ng, William
    Godsill, Simon
    2007 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2007, : 1873 - 1881
  • [5] Multi-target tracking in clutter with sequential Monte Carlo methods
    Liu, B.
    Ji, C.
    Zhang, Y.
    Hao, C.
    Wong, K. -K.
    IET RADAR SONAR AND NAVIGATION, 2010, 4 (05): : 662 - 672
  • [6] Fusion of estimation and guidance using sequential Monte Carlo methods
    Shaviv, IG
    Oshman, Y
    2005 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), VOLS 1AND 2, 2005, : 1361 - 1366
  • [7] Novel sequential Monte Carlo method to target tracking
    School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    Dianzi Yu Xinxi Xuebao, 2007, 9 (2120-2123): : 2120 - 2123
  • [8] Sequential Monte Carlo for manoeuvring target tracking in clutter
    Gordon, NJ
    Doucet, A
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1999, 1999, 3809 : 493 - 500
  • [9] Online multitarget detection and tracking using sequential Monte Carlo methods
    Li, J
    Ng, W
    Godsill, S
    Vermaak, J
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 115 - 121
  • [10] Tracking variable number of targets using sequential Monte Carlo methods
    Ng, William
    Li, Jack
    Godsill, Simon
    Vermaak, Jaco
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 1207 - 1211