We report on intraband photocurrent spectroscopy of sixfold stacked Ge/Si quantum dots embedded in a Si matrix and aligned along the growth direction. The dots are formed in a shape of pyramids with the average lateral size of 18 nm. The n-type heterostructures show broad spectral response ranging from 5 to 20 mu m, depending on the polarization of the incoming infrared light. The normal incidence photocurrent peak centered around 12-15 mu m is attributed to the transitions from the electron states localized in the Si region adjacent to the dots to continuum states of the Si matrix. The electron confinement is caused by a modification of the conduction band alignment induced by inhomogeneous tensile strain in Si around the buried Ge/Si quantum dots. Using the Ge content and dot shape determined by Raman and scanning tunneling microscopy analysis as input parameters for three-dimensional band structure simulations, a good agreement between measured and calculated electron binding energy is obtained. Photoluminescence spectroscopy and measurements of temperature dependence of dark conductance are used to correlate photocurrent results.