Computational Studies on Metal Foam and Heat Pipe Enhanced Latent Thermal Energy Storage

被引:64
作者
Nithyanandam, K. [1 ]
Pitchumani, R. [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Adv Mat & Technol Lab, Blacksburg, VA 24061 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2014年 / 136卷 / 05期
关键词
computational modeling; metal foam; latent thermal energy storage; heat pipes; concentrating solar power; PHASE-CHANGE MATERIALS; CONVECTION; SYSTEM;
D O I
10.1115/1.4026040
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal energy storage is a distinguishing component of a concentrating solar power (CSP) system, which enables uninterrupted operation of plant during periods of cloudy or intermittent solar availability. Latent thermal energy storage (LTES) which utilizes phase change material (PCM) as a heat storage medium is attractive due to its high energy storage density and low capital cost. However, the low thermal conductivity of the PCM restricts its solidification rate, leading to inefficient heat transfer between the PCM and the heat transfer fluid which carries thermal energy to the power block. To address this limitation, LTES embedded with heat pipes and PCM's stored within the framework of porous metal foam that have one to two orders of magnitude higher thermal conductivity than the PCM are considered in the present study. A transient, computational analysis of the metal foam enhanced LTES system with embedded heat pipes is performed to investigate the enhancement in the thermal performance of the system for different arrangements of heat pipes and design parameters of metal foam, during both charging and discharging operation.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
ASHBY M. F., 2000, Metal Foams: A Design Guide
[2]   NATURAL-CONVECTION SOLID LIQUID-PHASE CHANGE IN POROUS-MEDIA [J].
BECKERMANN, C ;
VISKANTA, R .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1988, 31 (01) :35-46
[3]   On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam [J].
Boomsma, K ;
Poulikakos, D .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (04) :827-836
[4]  
BRENT AD, 1988, NUMER HEAT TRANSFER, V13, P297, DOI 10.1080/10407788808913615
[5]   Forced convection in high porosity metal foams [J].
Calmidi, VV ;
Mahajan, RL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (03) :557-565
[6]   Enhancement of heat transfer in latent heat storage modules with internal fins [J].
Gharebaghi, Maryam ;
Sezai, I. .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2008, 53 (07) :749-765
[7]   Survey of thermal energy storage for parabolic trough power plants [J].
Herrmann, U ;
Kearney, DW .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (02) :145-152
[8]  
Jegadheeswaran S., 2009, APPL THERM ENG, V13, P329
[9]   High-temperature phase change materials for thermal energy storage [J].
Kenisarin, Murat M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03) :955-970
[10]  
Lee Y. C., 1993, P ASME INT EL PACK C, V1, P419