FIRST EIGENVALUE OF ONE-DIMENSIONAL DIFFUSION PROCESSES

被引:5
作者
Wang, Jian [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2009年 / 14卷
关键词
First Dirichlet eigenvalue; Hardy inequality; variational formula; transience; recurrence; diffusion operators; ELLIPTIC-OPERATORS; INEQUALITIES; EXPLICIT;
D O I
10.1214/ECP.v14-1464
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the first Dirichlet eigenvalue of diffusion operators on the half line. A criterion for the equivalence of the first Dirichlet eigenvalue with respect to the maximum domain and that to the minimum domain is presented. We also describle the relationships between the first Dirichlet eigenvalue of transient diffusion operators and the standard Muckenhoupt's conditions for the dual weighted Hardy inequality. Pinsky's result [17] and Chen's variational formulas [8] are reviewed, and both provide the original motivation for this research.
引用
收藏
页码:232 / 244
页数:13
相关论文
共 21 条