On Lie Superalgebras with a Filiform Module as an Odd Part

被引:0
|
作者
Barreiro, Elisabete [1 ]
Benayadi, Said [2 ]
Navarro, Rosa M. [3 ]
Sanchez, Jose M. [4 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, Coimbra, Portugal
[2] Univ Lorraine, Lab Math, IECL UMR CNRS 7502, Metz, France
[3] Univ Extremadura, Dept Matemat, Caceres, Spain
[4] Univ Cadiz, Dept Matemat, Puerto Real, Spain
关键词
Lie superalgebras; quadratic Lie superalgebras; double extensions; solvable; filiform; INVARIANT; ALGEBRAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is on one hand to characterise in any even dimension, via double extensions, a very special family of quadratic Lie superalgebras g = g0 over bar (R) g1 over bar such that g1 over bar is a filiform g0 over bar -module (filiform type). On the other hand, we show that the study of quadratic Lie superalgebras of filiform type can be reduced to those that are solvable. Moreover, we obtain an inductive description of solvable quadratic Lie superalgebras of filiform type via both double extensions and odd double extensions of quadratic ones.
引用
收藏
页码:917 / 936
页数:20
相关论文
共 50 条
  • [21] STRUCTURE OF SYMPATHETIC LIE SUPERALGEBRAS
    Fan, Yusi
    Yao, Chenrui
    Chen, Liangyun
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (05): : 2945 - 2957
  • [22] Nonlinear realizations of Lie superalgebras
    Palmkvist, Jakob
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) : 4917 - 4936
  • [23] LIE SUPERALGEBRAS WITH SOME HOMOGENEOUS STRUCTURES
    Ayadi, Imen
    Benamor, Hedi
    Benayadi, Said
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (05)
  • [24] Intuitionistic Fuzzy Lie Sub-superalgebras and Ideals of Lie Superalgebras
    Chen, Wenjuan
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 841 - 845
  • [25] Description of some families of filiform lie algebras
    Echarte, Francisco J.
    Nunez, Juan
    Ramirez, Francisco
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (01): : 19 - 32
  • [26] On degenerations of Lie superalgebras
    Alejandra Alvarez, Maria
    Hernandez, Isabel
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (01) : 29 - 44
  • [27] On Naturally Graded Lie and Leibniz Superalgebras
    Camacho, L. M.
    Navarro, R. M.
    Sanchez, J. M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3411 - 3435
  • [28] Some deformations of nilpotent Lie superalgebras
    Bordemann, M.
    Gomez, J. R.
    Khakimdjanov, Yu.
    Navarro, R. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) : 1391 - 1403
  • [29] Codimension Growth of Solvable Lie Superalgebras
    Repovs, Dusan D.
    Zaicev, Mikhail, V
    JOURNAL OF LIE THEORY, 2018, 28 (04) : 1189 - 1199
  • [30] Thermal Lie superalgebras
    Trindade, Marco A. S.
    Pinto, Eric
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (30):