Numerical resolution of cone-constrained eigenvalue problems

被引:0
|
作者
Da Costa, A. Pinto [1 ,2 ]
Seeger, Alberto [3 ]
机构
[1] Univ Tecn Lisbon, Inst Super Tecn, Dept Engn Civil & Arquitectura, P-1049001 Lisbon, Portugal
[2] ICIST, P-1049001 Lisbon, Portugal
[3] Univ Avignon, Dept Math, F-84000 Avignon, France
关键词
complementarity condition; generalized eigenvalue problem; power iteration method; scaling and projection algorithm; COMPLEMENTARITY-PROBLEM; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex cone K and matrices A and B, one wishes to find a scalar lambda and a nonzero vector x satisfying the complementarity system K (sic) x perpendicular to (Ax - lambda Bx) is an element of K+. This problem arises in mechanics and in other areas of applied mathematics. Two numerical techniques for solving such kind of cone-constrained eigenvalue problem are discussed, namely, the Power Iteration Method and the Scaling and Projection Algorithm.
引用
收藏
页码:37 / 61
页数:25
相关论文
共 50 条
  • [31] A classification method based on generalized eigenvalue problems
    Guarracino, M. R.
    Cifarelli, C.
    Seref, O.
    Pardalos, P. M.
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (01) : 73 - 81
  • [32] Optimal quotients for solving large eigenvalue problems
    Marko Huhtanen
    Vesa Kotila
    BIT Numerical Mathematics, 2019, 59 : 125 - 154
  • [33] Backward error and condition of polynomial eigenvalue problems
    Tisseur, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 309 (1-3) : 339 - 361
  • [34] ITERATIVE METHODS FOR NEUTRON TRANSPORT EIGENVALUE PROBLEMS
    Scheben, Fynn
    Graham, Ivan G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2785 - 2804
  • [35] Inexact Methods for Symmetric Stochastic Eigenvalue Problems
    Lee, Kookjin
    Sousedik, Bedrich
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1744 - 1776
  • [36] Existence of Positive Solutions for Nonlinear Eigenvalue Problems
    Wang, Sheng-Ping
    Wong, Fu-Hsiang
    Kung, Fan-Kai
    BOUNDARY VALUE PROBLEMS, 2010,
  • [37] Optimal quotients for solving large eigenvalue problems
    Huhtanen, Marko
    Kotila, Vesa
    BIT NUMERICAL MATHEMATICS, 2019, 59 (01) : 125 - 154
  • [38] On Nonlinearization of 3-parameter Eigenvalue Problems
    Bora, Niranjan
    Chutia, Bikash
    Moran, Rubul
    Bora, Mukul Chandra
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (03): : 1061 - 1073
  • [39] Multiparameter Eigenvalue Problems and Shift-invariance
    De Cock, Katrien
    De Moor, Bart
    IFAC PAPERSONLINE, 2021, 54 (09): : 159 - 165
  • [40] Equilibrium problems involving the Lorentz cone
    Pedro Gajardo
    Alberto Seeger
    Journal of Global Optimization, 2014, 58 : 321 - 340