Numerical resolution of cone-constrained eigenvalue problems

被引:0
|
作者
Da Costa, A. Pinto [1 ,2 ]
Seeger, Alberto [3 ]
机构
[1] Univ Tecn Lisbon, Inst Super Tecn, Dept Engn Civil & Arquitectura, P-1049001 Lisbon, Portugal
[2] ICIST, P-1049001 Lisbon, Portugal
[3] Univ Avignon, Dept Math, F-84000 Avignon, France
关键词
complementarity condition; generalized eigenvalue problem; power iteration method; scaling and projection algorithm; COMPLEMENTARITY-PROBLEM; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex cone K and matrices A and B, one wishes to find a scalar lambda and a nonzero vector x satisfying the complementarity system K (sic) x perpendicular to (Ax - lambda Bx) is an element of K+. This problem arises in mechanics and in other areas of applied mathematics. Two numerical techniques for solving such kind of cone-constrained eigenvalue problem are discussed, namely, the Power Iteration Method and the Scaling and Projection Algorithm.
引用
收藏
页码:37 / 61
页数:25
相关论文
共 50 条
  • [1] CONE-CONSTRAINED RATIONAL EIGENVALUE PROBLEMS
    Seeger, Alberto
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 187 - 203
  • [2] A nonsmooth algorithm for cone-constrained eigenvalue problems
    Adly, Samir
    Seeger, Alberto
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (02) : 299 - 318
  • [3] A nonsmooth algorithm for cone-constrained eigenvalue problems
    Samir Adly
    Alberto Seeger
    Computational Optimization and Applications, 2011, 49 : 299 - 318
  • [4] Solving inverse cone-constrained eigenvalue problems
    Gajardo, Pedro
    Seeger, Alberto
    NUMERISCHE MATHEMATIK, 2013, 123 (02) : 309 - 331
  • [5] Cone-Constrained Singular Value Problems
    Seeger, Alberto
    Sossa, David
    JOURNAL OF CONVEX ANALYSIS, 2023, 30 (04) : 1285 - 1306
  • [6] Characterizations of solution sets of cone-constrained convex programming problems
    Miao, Xin-He
    Chen, Jein-Shan
    OPTIMIZATION LETTERS, 2015, 9 (07) : 1433 - 1445
  • [7] A New Jacobian-Like Method for the Polyhedral Cone-Constrained Eigenvalue Problem
    Sun, Guo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [8] ON APPROXIMATE KKT OPTIMALITY CONDITIONS FOR CONE-CONSTRAINED VECTOR OPTIMIZATION PROBLEMS
    Nguyen Van Tuyen
    Xiao, Yi-Xioa
    Ta Quang Son
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (01) : 105 - 117
  • [9] Numerical solution of linear eigenvalue problems
    Bosch, Jessica
    Greif, Chen
    GEOMETRIC AND COMPUTATIONAL SPECTRAL THEORY, 2017, 700 : 117 - 153
  • [10] Constructive Analysis of Eigenvalue Problems in Control under Numerical Uncertainty
    Osinenko, Pavel
    Devadze, Grigory
    Streif, Stefan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (09) : 2177 - 2185