A family of the information criteria using the phi-divergence for categorical data

被引:1
作者
Ogasawara, Haruhiko [1 ]
机构
[1] Otaru Univ, 3-5-21 Midori, Otaru, Hokkaido 0478501, Japan
关键词
Power divergence; Risk; Model selection; Asymptotic bias; Akaike information criterion; LOGLINEAR MODELS; CROSS-VALIDATION; SELECTION; ESTIMATORS; SQUARE; CHOICE;
D O I
10.1016/j.csda.2018.03.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The risk of the phi-divergence of a statistical model for categorical data is defined using two independent sets of data. The asymptotic bias of the phi-divergence based on current data as an estimator of the risk is shown to be equal to the negative penalty term of the Akaike information criterion (AIC). Though the higher-order asymptotic bias is derived, the higher-order bias depends on the form of the phi-divergence and the estimation method of parameters using a possible different form of the phi-divergence. An approximation to the higher-order bias is obtained based on the simple result of the saturated model. The information criteria using this approximation yield improved results in simulations for model selection. Some cases of the phi-divergences show advantages over the AIC in simulations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
[41]   Identifying statistical properties of solar radiation models by using information criteria [J].
Linguet, Laurent ;
Pousset, Yannis ;
Olivier, Christian .
SOLAR ENERGY, 2016, 132 :236-246
[42]   Using information criteria to determine the number of regimes in threshold autoregressive models [J].
Hamaker, E. L. .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2009, 53 (06) :518-529
[43]   Selection of a barley yield model using information-theoretic criteria [J].
Jasieniuk, Marie ;
Taper, Mark L. ;
Wagner, Nicole C. ;
Stougaard, Robert N. ;
Brelsford, Monica ;
Maxwell, Bruce D. .
WEED SCIENCE, 2008, 56 (04) :628-636
[44]   Selecting nonlinear stochastic process rate models using information criteria [J].
Walker, DM ;
Marion, G .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (02) :190-196
[45]   Nonlinear predictive model selection and model averaging using information criteria [J].
Gu, Yuanlin ;
Wei, Hua-Liang ;
Balikhin, Michael M. .
SYSTEMS SCIENCE & CONTROL ENGINEERING, 2018, 6 (01) :319-328
[46]   Mixture-model cluster analysis using information theoretical criteria [J].
Fonseca, Jaime R. S. ;
Cardoso, Margarida G. M. S. .
INTELLIGENT DATA ANALYSIS, 2007, 11 (02) :155-173
[47]   Variable selection in regression models using nonstandard optimisation of information criteria [J].
Kapetanios, George .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) :4-15
[48]   Model selection information criteria in latent class models with missing data and contingency question [J].
Lin, Ting Hsiang .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (01) :159-170
[49]   Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data [J].
Gao, Xin ;
Song, Peter X. -K. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (492) :1531-1540
[50]   Model Selection Information Criteria in Latent Class Models with Missing Data and Contingency Question [J].
Lin, Ting Hsiang .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) :319-331