A family of the information criteria using the phi-divergence for categorical data

被引:1
作者
Ogasawara, Haruhiko [1 ]
机构
[1] Otaru Univ, 3-5-21 Midori, Otaru, Hokkaido 0478501, Japan
关键词
Power divergence; Risk; Model selection; Asymptotic bias; Akaike information criterion; LOGLINEAR MODELS; CROSS-VALIDATION; SELECTION; ESTIMATORS; SQUARE; CHOICE;
D O I
10.1016/j.csda.2018.03.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The risk of the phi-divergence of a statistical model for categorical data is defined using two independent sets of data. The asymptotic bias of the phi-divergence based on current data as an estimator of the risk is shown to be equal to the negative penalty term of the Akaike information criterion (AIC). Though the higher-order asymptotic bias is derived, the higher-order bias depends on the form of the phi-divergence and the estimation method of parameters using a possible different form of the phi-divergence. An approximation to the higher-order bias is obtained based on the simple result of the saturated model. The information criteria using this approximation yield improved results in simulations for model selection. Some cases of the phi-divergences show advantages over the AIC in simulations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
[31]   Performance of information criteria for selection of Hawkes process models of financial data [J].
Chen, J. ;
Hawkes, A. G. ;
Scalas, E. ;
Trinh, M. .
QUANTITATIVE FINANCE, 2018, 18 (02) :225-235
[32]   Improving Quality of Ensemble Technique for Categorical Data Clustering Using Granule Computing [J].
Brnawy, Rahmah ;
Shiri, Nematollaah .
DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2021, PT I, 2021, 12923 :261-272
[33]   Context-Specific Causal Discovery for Categorical Data Using Staged Trees [J].
Leonelli, Manuele ;
Varando, Gherardo .
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
[34]   Developing a non-categorical measure of child health using administrative data [J].
Arim, Rubab G. ;
Kohen, Dafna E. ;
Brehaut, Jamie C. ;
Guevremont, Anne ;
Garner, Rochelle E. ;
Miller, Anton R. ;
McGrail, Kimberlyn ;
Brownell, Marni ;
Lach, Lucy M. ;
Rosenbaum, Peter L. .
HEALTH REPORTS, 2015, 26 (02) :9-16
[35]   On the selection of predictors by using greedy algorithms and information theoretic criteria [J].
Li, Fangyao ;
Triggs, Christopher M. M. ;
Giurcaneanu, Ciprian Doru .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (02) :77-100
[36]   Variable selection in data envelopment analysis via Akaike's information criteria [J].
Li, Yongjun ;
Shi, Xiao ;
Yang, Min ;
Liang, Liang .
ANNALS OF OPERATIONS RESEARCH, 2017, 253 (01) :453-476
[37]   Analysis of categorical incident data and design for safety interventions using axiomatic design framework [J].
Verma, Abhishek ;
Maiti, J. ;
Boustras, G. .
SAFETY SCIENCE, 2020, 123
[38]   Indicators of hotel profitability: Model selection using Akaike information criteria [J].
Taylor, D. Christopher ;
Snipes, Michael ;
Barber, Nelson A. .
TOURISM AND HOSPITALITY RESEARCH, 2018, 18 (01) :61-71
[39]   Adaptive-Size Dictionary Learning Using Information Theoretic Criteria [J].
Dumitrescu, Bogdan ;
Giurcaneanu, Ciprian Doru .
ALGORITHMS, 2019, 12 (09)
[40]   Piecewise regression analysis through information criteria using mathematical programming [J].
Gkioulekas, Ioannis ;
Papageorgiou, Lazaros G. .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 121 :362-372