A family of the information criteria using the phi-divergence for categorical data

被引:1
|
作者
Ogasawara, Haruhiko [1 ]
机构
[1] Otaru Univ, 3-5-21 Midori, Otaru, Hokkaido 0478501, Japan
关键词
Power divergence; Risk; Model selection; Asymptotic bias; Akaike information criterion; LOGLINEAR MODELS; CROSS-VALIDATION; SELECTION; ESTIMATORS; SQUARE; CHOICE;
D O I
10.1016/j.csda.2018.03.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The risk of the phi-divergence of a statistical model for categorical data is defined using two independent sets of data. The asymptotic bias of the phi-divergence based on current data as an estimator of the risk is shown to be equal to the negative penalty term of the Akaike information criterion (AIC). Though the higher-order asymptotic bias is derived, the higher-order bias depends on the form of the phi-divergence and the estimation method of parameters using a possible different form of the phi-divergence. An approximation to the higher-order bias is obtained based on the simple result of the saturated model. The information criteria using this approximation yield improved results in simulations for model selection. Some cases of the phi-divergences show advantages over the AIC in simulations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
  • [1] Asymptotic cumulants of the minimum phi-divergence estimator for categorical data under possible model misspecification
    Ogasawara, Haruhiko
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (10) : 2448 - 2465
  • [2] Preliminary test estimators and phi-divergence measures in generalized linear models with binary data
    Menendez, M. L.
    Pardo, L.
    Pardo, M. C.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (10) : 2265 - 2284
  • [3] Residual analysis and outliers in loglinear models based on phi-divergence statistics
    Gupta, A. K.
    Nguyen, T.
    Pardo, L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (04) : 1407 - 1423
  • [4] Testing linear hypotheses in logistic regression analysis with complex sample survey data based on phi-divergence measures
    Castilla, E.
    Martin, N.
    Pardo, L.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (22) : 5228 - 5247
  • [5] Empirical phi-divergence test statistics for testing simple and composite null hypotheses
    Balakrishnan, N.
    Martin, N.
    Pardo, L.
    STATISTICS, 2015, 49 (05) : 951 - 977
  • [6] Minimum Phi-divergence estimators for loglinear models with linear constraints and multinomial sampling
    Martin, N.
    Pardo, L.
    STATISTICAL PAPERS, 2008, 49 (01) : 15 - 36
  • [7] Minimum phi-divergence estimators for loglinear models with linear constraints and multinomial sampling
    N. Martín
    L. Pardo
    Statistical Papers, 2008, 49 : 15 - 36
  • [8] How to handle missing data in regression models using information criteria
    Kuiper, Rebecca M.
    Hoijtink, Herbert
    STATISTICA NEERLANDICA, 2011, 65 (04) : 489 - 506
  • [9] On measures of information and divergence and model selection criteria
    Karagrigoriou, Alex
    Papaioannou, Takis
    STATISTICAL MODELS AND METHODS FOR BIOMEDICAL AND TECHNICAL SYSTEMS, 2008, : 503 - +
  • [10] Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data
    Lemus, Mariano
    Beirao, Joao P.
    Paunkovic, Nikola
    Carvalho, Alexandra M.
    Mateus, Paulo
    ENTROPY, 2020, 22 (01) : 49