ON CONDITIONALLY HETEROSCEDASTIC AR MODELS WITH THRESHOLDS

被引:16
作者
Chan, Kung-Sik [1 ]
Li, Dong [2 ]
Ling, Shiqing [3 ]
Tong, Howell [4 ]
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Tsinghua Univ, Ctr Math Sci, Beijing 100084, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Math, Clear Water Bay, Hong Kong, Peoples R China
[4] Univ London London Sch Econ & Polit Sci, Dept Stat, London WC2A 2AE, England
基金
美国国家科学基金会;
关键词
Compound Poisson process; conditional variance; heavy tail; heteroscedasticity; limiting distribution; quasi-maximum likelihood estimation; random field; score test; T-CHARM; threshold model; volatility; AUTOREGRESSION;
D O I
10.5705/ss.2012.185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditional heteroscedasticity is prevalent in many time series. By viewing conditional heteroscedasticity as the consequence of a dynamic mixture of independent random variables, we develop a simple yet versatile observable mixing function, leading to the conditionally heteroscedastic AR model with thresholds, or a T-CHARM for short. We demonstrate its many attributes and provide comprehensive theoretical underpinnings with efficient computational procedures and algorithms. We compare, via simulation, the performance of T-CHARM with the GARCH model. We report some experiences using data from economics, biology, and geoscience.
引用
收藏
页码:625 / 652
页数:28
相关论文
共 40 条