Galilei-invariant equations for massive fields

被引:1
|
作者
Niederle, J. [1 ]
Nikitin, A. G. [2 ]
机构
[1] Acad Sci Czech Republ, Inst Phys, Prague 18221, Czech Republic
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
FINITE-DIMENSIONAL REPRESENTATIONS; ARBITRARY SPIN; PARTICLES;
D O I
10.1088/1751-8113/42/24/245209
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Galilei-invariant equations for massive fields with various spins have been found and classified. They have been derived directly, i.e., by using requirement of the Galilei invariance and various facts on representations of the Galilei group deduced in the paper written by de Montigny, Niederle and Nikitin (2006 J. Phys. A: Math. Gen. 39 1-21). A completed list of non-equivalent Galilei-invariant wave equations for vector and scalar fields is presented. It shows two things. First that the collection of such equations is very broad and describes many physically consistent systems. In particular it is possible to describe spin-orbit and Darwin couplings in frames of a Galilei-invariant approach. Second, these Galilei-invariant equations can be obtained either via contraction of known relativistic equations or via contractions of quite new relativistic wave equations.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] GALILEI-INVARIANT EQUATIONS WITH AN ANOMALOUS INTERACTION
    NIKITIN, AG
    UKRAINSKII FIZICHESKII ZHURNAL, 1981, 26 (03): : 394 - 402
  • [2] THE NONLINEAR GALILEI-INVARIANT GENERALIZATION OF LAME EQUATIONS
    FUSHCHICH, VI
    SLAVUTSKII, SL
    DOKLADY AKADEMII NAUK SSSR, 1986, 287 (02): : 320 - 323
  • [3] NELIEV REDUCTION OF GALILEI-INVARIANT SPINOR EQUATIONS
    ZHDANOV, RZ
    ANDREITSEV, AY
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (07): : 8 - 11
  • [4] On new Galilei-invariant equations in two-dimensional spacetime
    Lahno, VI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (42): : 8511 - 8519
  • [5] GALILEI-INVARIANT NONLINEAR-SYSTEMS OF EVOLUTION-EQUATIONS
    FUSHCHYCH, WI
    CHERNIHA, RM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (19): : 5569 - 5579
  • [6] Generalized Galilei-invariant classical mechanics
    Woodcock, HW
    Havas, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (18): : 4259 - 4289
  • [7] GALILEI-INVARIANT SINGLE-PARTICLE ACTION
    CAWLEY, RG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1973, 16 (01): : 173 - 187
  • [8] SOME RESULTS IN GALILEI-INVARIANT FIELD-THEORIES
    KASHIWA, T
    SETO, K
    TAKAHASHI, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (07): : 745 - 754
  • [9] QUANTUM-FIELD THEORIES WITH GALILEI-INVARIANT INTERACTIONS
    NARNHOFER, H
    THIRRING, W
    PHYSICAL REVIEW LETTERS, 1990, 64 (16) : 1863 - 1866
  • [10] POTENTIAL SCATTERING AND GALILEI-INVARIANT EXPANSIONS OF SCATTERING-AMPLITUDES
    KALNINS, EG
    PATERA, J
    SHARP, RT
    WINTERNITZ, P
    PHYSICAL REVIEW D, 1973, 8 (10) : 3527 - 3538