A Self-Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety

被引:146
作者
Yuan, Bin [1 ]
Wu, Han [1 ]
Wang, Hua [1 ]
Tang, Bohan [1 ]
Xu, Jiang-Fei [1 ]
Zhang, Xi [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
cucurbituril; host– guest systems; photodynamic therapy; photosensitizers; supramolecular chemistry; RATIONAL DESIGN; RADICAL-ANIONS; BODIPY DYES; DERIVATIVES; STRATEGIES;
D O I
10.1002/anie.202012477
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Concerning that the residues of photosensitizers (PS) may cause serious side effects under light, it is of great significant to timely switch-off PS after photodynamic therapy (PDT). Herein, we proposed a supramolecular strategy to regulate the activity of PS, fabricating a supramolecular PS with improved reactive oxygen species (ROS) generation efficiency and accelerated self-degradation ability. During PDT treatment, the supramolecular PS exhibited good therapeutic efficiency as well as reduced dark toxicity. Moreover, the supramolecular PS could be degraded by ROS generated by itself and lose its PDT activities once PDT treatment finished. In this way, the side effects of PDT can be reduced without sacrificing the therapeutic efficiency. This work provides a novel strategy for smarter PDT beacon to further improve the safety of PDT treatment.
引用
收藏
页码:706 / 710
页数:5
相关论文
共 59 条
[1]  
[Anonymous], 2019, ANGEW CHEM INT EDIT
[2]   Cucurbiturils: from synthesis to high-affinity binding and catalysis [J].
Assaf, Khaleel I. ;
Nau, Werner M. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (02) :394-418
[3]   Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy [J].
Awuah, Samuel G. ;
You, Youngjae .
RSC ADVANCES, 2012, 2 (30) :11169-11183
[4]   Cucurbituril-Based Molecular Recognition [J].
Barrow, Steven J. ;
Kasera, Setu ;
Rowland, Matthew J. ;
del Barrio, Jesus ;
Scherman, Oren A. .
CHEMICAL REVIEWS, 2015, 115 (22) :12320-12406
[5]   Photobleaching of sensitisers used in photodynamic therapy [J].
Bonnett, R ;
Martínez, G .
TETRAHEDRON, 2001, 57 (47) :9513-9547
[6]   Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization [J].
Celli, Jonathan P. ;
Spring, Bryan Q. ;
Rizvi, Imran ;
Evans, Conor L. ;
Samkoe, Kimberley S. ;
Verma, Sarika ;
Pogue, Brian W. ;
Hasan, Tayyaba .
CHEMICAL REVIEWS, 2010, 110 (05) :2795-2838
[7]  
Chen C., 2020, ANGEW CHEM, V132
[8]   Calixarene-Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image-Guided Cancer Surgery [J].
Chen, Chao ;
Ni, Xiang ;
Tian, Han-Wen ;
Liu, Qian ;
Guo, Dong-Sheng ;
Ding, Dan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (25) :10008-10012
[9]   Supramolecular Porphyrin Photosensitizers: Controllable Disguise and Photoinduced Activation of. Antibacterial Behavior [J].
Chen, Linghui ;
Bai, Haotian ;
Xu, Jiang-Fei ;
Wang, Shu ;
Zhang, Xi .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (16) :13950-13957
[10]   Photodynamic therapy for cancer [J].
Dolmans, DEJGJ ;
Fukumura, D ;
Jain, RK .
NATURE REVIEWS CANCER, 2003, 3 (05) :380-387