APPLICATIONS OF LIE SYSTEMS IN DISSIPATIVE MILNE-PINNEY EQUATIONS

被引:29
作者
Carinena, Jose F. [1 ]
De Lucas, Javier [1 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
关键词
Superposition rule; Milne-Pinney equation; Ermakov system; quasi-Lie scheme; DIFFERENTIAL-EQUATIONS; HARMONIC-OSCILLATOR; GEOMETRIC APPROACH; INVARIANTS; TRANSFORMATION; THEOREM; ERMAKOV;
D O I
10.1142/S0219887809003758
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the geometric approach to the theory of Lie systems of differential equations in order to study dissipative Ermakov systems. We prove that there is a superposition rule for solutions of such equations. This fact enables us to express the general solution of a dissipative Milne-Pinney equation in terms of particular solutions of a system of second-order linear differential equations and a set of constants.
引用
收藏
页码:683 / 699
页数:17
相关论文
共 29 条
[11]   A Geometric Approach to Time Evolution Operators of Lie Quantum Systems [J].
Carinena, Jose F. ;
de Lucas, Javier ;
Ramos, Arturo .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (05) :1379-1404
[12]   ON THE QUANTUM-THEORY OF THE DAMPED HARMONIC-OSCILLATOR [J].
CERVERO, JM ;
VILLARROEL, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (15) :2963-2971
[13]  
Chini M., 1898, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., V33, P737
[14]   INVARIANTS FOR THE TIME-DEPENDENT HARMONIC-OSCILLATOR .1. [J].
COLEGRAVE, RK ;
ABDALLA, MS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3805-3815
[15]  
Ermakov VP., 1880, Univ. Izv. Kiev, V20, P1, DOI doi:10.2298/AADM0802123E
[16]  
HAAS F, MATHPH07124083
[17]  
Lie S., 1893, Vorlesungen Uber Continuierliche Gruppen mit Geometrischen und Anderen Anwendungen
[18]   The numerical determination of characteristic numbers [J].
Milne, WE .
PHYSICAL REVIEW, 1930, 35 (07) :0863-0867
[19]   Liouville transformation and exactly solvable Schrodinger equations [J].
Milson, R .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (06) :1735-1752
[20]   Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients [J].
Musielak, Z. E. ;
Roy, D. ;
Swift, L. D. .
CHAOS SOLITONS & FRACTALS, 2008, 38 (03) :894-902