Maximal hyperelliptic curves of genus three

被引:10
作者
Kodama, Tetsuo [2 ]
Top, Jaap [1 ]
Washio, Tadashi [3 ]
机构
[1] Univ Groningen, Dept Math, IWI RuG, NL-9747 AG Groningen, Netherlands
[2] Kyushu Univ, Fukuoka 8108560, Japan
[3] Nagasaki Univ, Fac Educ, Dept Math, Nagasaki 8528521, Japan
关键词
FINITE-FIELDS; RATIONAL-POINTS;
D O I
10.1016/j.ffa.2009.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note contains general remarks concerning finite fields over which a so-called maximal, hyperelliptic curve of genus 3 exists. Moreover, the geometry of some specific hyperelliptic curves of genus 3 arising as quotients of Fermat curves, is studied. In particular, this results in a description of the finite fields over which a curve as studied here, is maximal. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:392 / 403
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 2005, ARITHMETIC GEOMETRY
[2]  
[Anonymous], 1961, PUBLICATIONS MATH SO
[3]   On curves covered by the Hermitian curve [J].
Cossidente, A ;
Korchmáros, G ;
Torres, F .
JOURNAL OF ALGEBRA, 1999, 216 (01) :56-76
[4]  
Deuring M., 1941, ABH MATH SEM HAMBURG, V14, P197, DOI 10.1007/BF02940746
[5]  
Elkies N., 1999, Math. Sci. Res. Inst. Publ., V35, P51
[6]   On subfields of the Hermitian function field [J].
Garcia, A ;
Stichtenoth, H ;
Xing, CP .
COMPOSITIO MATHEMATICA, 2000, 120 (02) :137-170
[7]   ON RATIONAL-POINTS OF CURVES OF GENUS-3 OVER FINITE-FIELDS [J].
IBUKIYAMA, T .
TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (03) :311-329
[8]   IDEMPOTENT RELATIONS AND FACTORS OF JACOBIANS [J].
KANI, E ;
ROSEN, M .
MATHEMATISCHE ANNALEN, 1989, 284 (02) :307-327
[9]   A FAMILY OF HYPERELLIPTIC FUNCTION-FIELDS WITH HASSE-WITT-INVARIANT ZERO [J].
KODAMA, T ;
WASHIO, T .
JOURNAL OF NUMBER THEORY, 1990, 36 (02) :187-200
[10]   The maximum or minimum number of rational points on genus three curves over finite fields [J].
Lauter, K ;
Serre, JP .
COMPOSITIO MATHEMATICA, 2002, 134 (01) :87-111