GlobalWell-Posedness of the Euler-Korteweg System for Small Irrotational Data

被引:34
作者
Audiard, Corentin [1 ,2 ]
Haspot, Boris [3 ]
机构
[1] Sorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] PSL Res Univ, Univ Paris Dauphine, CNRS, Ceremade,UMR 7534, F-75775 Paris 16, France
关键词
GROSS-PITAEVSKII EQUATION; SCATTERING-THEORY; WEAK SOLUTIONS; EXISTENCE; WAVES;
D O I
10.1007/s00220-017-2843-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Euler-Korteweg equations are a modification of the Euler equations that take into account capillary effects. In the general case they form a quasi-linear system that can be recast as a degenerate Schrodinger type equation. Local well-posedness (in subcritical Sobolev spaces) was obtained by Benzoni-Danchin-Descombes in any space dimension, however, except in some special case (semi-linear with particular pressure) no global well-posedness is known. We prove here that under a natural stability condition on the pressure, global well-posedness holds in dimension d >= 3 for small irrotational initial data. The proof is based on a modified energy estimate, standard dispersive properties if d >= 5, and a careful study of the structure of quadratic nonlinearities in dimension 3 and 4, involving the method of space time resonances.
引用
收藏
页码:201 / 247
页数:47
相关论文
共 28 条
[1]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[2]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[3]  
Audiard C., PREPRINT
[4]   DISPERSIVE SMOOTHING FOR THE EULER-KORTEWEG MODEL [J].
Audiard, Corentin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) :3018-3040
[5]  
Bahouri H., 2011, GRUNDLEHREN MATHEMAT, V343
[6]   On the well-posedness for the Euler-Korteweg model in several space dimensions [J].
Benzoni-Gavage, S. ;
Danchin, R. ;
Descombes, S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1499-1579
[7]  
Benzoni-Gavage S, 2005, INTERFACE FREE BOUND, V7, P371
[8]  
Benzoni-Gavage S, 2013, DIFFER INTEGRAL EQU, V26, P439
[9]   ON THE MOTION OF INCOMPRESSIBLE INHOMOGENEOUS EULER-KORTEWEG FLUIDS [J].
Bulicek, Miroslav ;
Feireisl, Eduard ;
Malek, Josef ;
Shvydkoy, Roman .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03) :497-515
[10]   Madelung, Gross-Pitaevskii and Korteweg [J].
Carles, Remi ;
Danchin, Raphael ;
Saut, Jean-Claude .
NONLINEARITY, 2012, 25 (10) :2843-2873