Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets

被引:40
作者
Yang, Ai-Min [1 ,2 ]
Zhang, Yu-Zhu [2 ,3 ]
Cattani, Carlo [4 ]
Xie, Gong-Nan [5 ]
Rashidi, Mohammad Mehdi [6 ]
Zhou, Yi-Jun [7 ]
Yang, Xiao-Jun [8 ]
机构
[1] Hebei United Univ, Coll Sci, Tangshan 063009, Peoples R China
[2] Yanshan Univ, Coll Mech Engn, Qinhuangdao 066004, Peoples R China
[3] Hebei United Univ, Coll Met & Energy, Tangshan 063009, Peoples R China
[4] Univ Salerno, Dept Math, I-84084 Salerno, Italy
[5] Northwestern Polytech Univ, Sch Mech Engn, Xian 710048, Shaanxi, Peoples R China
[6] Bu Ali Sina Univ, Dept Mech Engn, Hamadan, Iran
[7] Hebei United Univ, Qinggong Coll, Tangshan 063009, Peoples R China
[8] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MECHANICS;
D O I
10.1155/2014/372741
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the local fractional series expansion method to solve the Klein-Gordon equations on Cantor sets within the local fractional derivatives. The analytical solutions within the nondifferential terms are discussed. The obtained results show the simplicity and efficiency of the present technique with application to the problems of the liner differential equations on Cantor sets.
引用
收藏
页数:6
相关论文
共 23 条
[1]   Stresses and strains in a deformable fractal medium and in its fractal continuum model [J].
Balankin, Alexander S. .
PHYSICS LETTERS A, 2013, 377 (38) :2535-2541
[2]   Static-kinematic duality and the principle of virtual work in the mechanics of fractal media [J].
Carpinteri, A ;
Chiaia, B ;
Cornetti, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (1-2) :3-19
[3]   Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations [J].
Chowdhury, M. S. H. ;
Hashim, I. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (04) :1928-1935
[4]   The decomposition method for studying the Klein-Gordon equation [J].
El-Sayed, SM .
CHAOS SOLITONS & FRACTALS, 2003, 18 (05) :1025-1030
[5]   Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation [J].
Gepreel, Khaled A. ;
Mohamed, Mohamed S. .
CHINESE PHYSICS B, 2013, 22 (01)
[6]  
Golmankhaneh A. K., 2013, J INEQUALITIES APPL, V2013
[7]  
Golmankhaneh AK, 2013, ROM REP PHYS, V65, P84
[8]   On nonlinear fractional Klein-Gordon equation [J].
Golmankhaneh, Alireza K. ;
Golmankhaneh, Ali K. ;
Baleanu, Dumitru .
SIGNAL PROCESSING, 2011, 91 (03) :446-451
[9]   Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line [J].
Golmankhaneh, Alireza Khalili ;
Golmankhaneh, Ali Khalili ;
Baleanu, Dumitru .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (11) :4210-4217
[10]   Exp-function Method for Fractional Differential Equations [J].
He, Ji-Huan .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (06) :363-366