Passification of non-square linear systems and feedback Yakubovich-Kalman-Popov lemma

被引:86
作者
Fradkov, A [1 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
基金
俄罗斯基础研究基金会;
关键词
linear systems; passification; passivity; Yakubovich-Kalman-Popov lemma;
D O I
10.3166/ejc.9.577-586
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The concepts of G-passivity and G-passifiability (feedback G-passivity) are introduced extending the concepts of passivity and passifiability to nonsquare systems (systems with different numbers of inputs and outputs). Necessary and sufficient conditions for strict G-passifiability of nonsquare linear systems by output feedback are given. Simple description of a broad subclass of passifying feedbacks is proposed. The proofs are based on a version of the celebrated Yakubovich-Kalman-Popov lemma.
引用
收藏
页码:577 / 586
页数:10
相关论文
共 41 条
[1]  
Abdallah C., 1991, Proceedings of the 1991 American Control Conference (IEEE Cat. No. 91CH2939-7), P1742
[2]  
ANDRIEVSKII BR, 1988, AUTOMAT REM CONTR+, V49, P1533
[3]  
ANDRIEVSKY BR, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P1265
[4]  
Andrievsky BR, 1996, IEEE DECIS CONTR P, P4537, DOI 10.1109/CDC.1996.577581
[5]  
Bondarko V, 2002, IEEE DECIS CONTR P, P3396, DOI 10.1109/CDC.2002.1184400
[6]   Necessary and sufficient conditions for the passivicability of linear distributed systems [J].
Bondarko, VA ;
Fradkov, AL .
AUTOMATION AND REMOTE CONTROL, 2003, 64 (04) :517-530
[7]   PASSIVITY, FEEDBACK EQUIVALENCE, AND THE GLOBAL STABILIZATION OF MINIMUM PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A ;
WILLEMS, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (11) :1228-1240
[8]  
Fomin V. N., 1981, Adaptive Control of Dynamic Systems
[9]   Adaptive observer-based synchronization for communication [J].
Fradkov, A ;
Nijmeijer, H ;
Markov, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (12) :2807-2813
[10]  
FRADKOV A, 1974, AUTOMAT REM CONTR+, V35, P1960