On the Center Problem for p : -q Resonant Polynomial Vector Fields

被引:22
作者
Romanovski, Valery G. [1 ]
Shafer, Douglas S. [2 ]
机构
[1] Univ Maribor, Ctr Appl Math & Theoret Phys, SI-2000 Maribor, Slovenia
[2] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
关键词
center; focus quantity; polynomial vector field; resonant;
D O I
10.36045/bbms/1228486413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the center variety for families of p : -q resonant polynomial vector fields and prove the correctness of the definition. We also derive an algorithm for computing the focus quantities of such vector fields.
引用
收藏
页码:871 / 887
页数:17
相关论文
共 18 条
[1]  
Amelkin VV, 1982, Nonlinear oscillations in second order systems
[2]  
BAUTIN NN, 1954, AM MATH SOC TRANSL S, V1, P396
[3]  
Bibikov Y., 1979, LECT NOTES MATH, V702
[4]   TOPOLOGICAL CLASSIFICATION AND BIFURCATIONS OF HOLOMORPHIC FLOWS WITH RESONANCES IN C-2 [J].
CAMACHO, C ;
SAD, P .
INVENTIONES MATHEMATICAE, 1982, 67 (03) :447-472
[5]   Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in C2 [J].
Christopher, C ;
Rousseau, C .
PUBLICACIONS MATEMATIQUES, 2001, 45 (01) :95-123
[6]   Algebraic properties of the Liapunov and period constants [J].
Cima, A ;
Gasull, A ;
Manosa, V ;
Manosas, F .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (02) :471-501
[7]  
COX D, 1992, IDEALS VARIETIES ALG
[8]  
Dulac H., 1908, Bull. Am. Math. Soc, V32, P230
[9]  
Fronville A, 1998, FUND MATH, V157, P191
[10]   Implementation of a new algorithm of computation of the Poincare-Liapunov constants [J].
Giné, J ;
Santallusia, X .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (02) :465-476