Motivic Milnor fiber of a quasi-ordinary hypersurface

被引:4
|
作者
Gonzalez Perez, Pedro D. [1 ]
Gonzalez Villa, Manuel [2 ]
机构
[1] Univ Complutense Madrid, Fac Math, Dept Algebra, E-28040 Madrid, Spain
[2] Heidelberg Univ, Math Ctr Heidelberg Match, D-69120 Heidelberg, Germany
关键词
ZETA-FUNCTION; ARC SPACES; SINGULARITIES; GERMS;
D O I
10.1515/crelle-2012-0049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : (Cd+1, 0) -> (C, 0) be a germ of complex analytic function such that its zero level defines an irreducible germ of quasi-ordinary hypersurface (S, 0) subset of (Cd+1, 0). We describe the motivic Igusa zeta function, the motivic Milnor fibre and the Hodge-Steenbrink spectrum of f at 0 in terms of topological invariants of (S, 0) subset of (Cd+1, 0).
引用
收藏
页码:159 / 205
页数:47
相关论文
共 50 条
  • [21] LIMITS OF TANGENTS OF QUASI-ORDINARY HYPERSURFACES
    Araujo, Antonio
    Neto, Orlando
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (01) : 1 - 11
  • [22] Zariski invariant for quasi-ordinary hypersurfaces
    Barbosa, R. A.
    Hernandes, M. E.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (01)
  • [23] Approximate roots of quasi-ordinary polynomials
    Gryszka, Beata
    DISSERTATIONES MATHEMATICAE, 2022, 572 : 1 - 48
  • [24] TOPOLOGY OF THE QUASI-ORDINARY SURFACE SINGULARITIES
    GAU, YN
    TOPOLOGY, 1986, 25 (04) : 495 - 519
  • [25] QUASI-ORDINARY SINGULARITIES AND NEWTON TREES
    Artal Bartolo, E.
    Cassou-Nogues, Pi
    Luengo, I.
    Melle Hernandez, A.
    MOSCOW MATHEMATICAL JOURNAL, 2013, 13 (03) : 365 - 398
  • [26] On the A-equivalence of quasi-ordinary parameterizations
    Hernandes, M. E.
    Panek, N. M. P.
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 255 - 272
  • [27] Zariski invariant for quasi-ordinary hypersurfaces
    R. A. Barbosa
    M. E. Hernandes
    Research in the Mathematical Sciences, 2024, 11
  • [28] A POLYHEDRAL CHARACTERIZATION OF QUASI-ORDINARY SINGULARITIES
    Mourtada, Hussein
    Schober, Bernd
    MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (04) : 755 - 785
  • [29] Higher Order Polars of Quasi-Ordinary Singularities
    Garcia Barroso, Evelia R.
    Gwoidziewicz, Janusz
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) : 1045 - 1080
  • [30] Quasi-ordinary power series and their zeta functions
    Bartolo, EA
    Cassou-Noguès, P
    Luengo, I
    Hernández, AM
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 178 (841) : III - +