Divergence and convergence of inertial particles in high-Reynolds-number turbulence

被引:13
|
作者
Oujia, Thibault [1 ,2 ]
Matsuda, Keigo [1 ,2 ,3 ]
Schneider, Kai [1 ,2 ]
机构
[1] Aix Marseille Univ, Inst Math Marseille I2M, CNRS, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[2] Cent Marseille, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[3] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res Inst Value Added Informat Generat VAiG, Kanazawa Ku, 3173-25 Showa Machi, Yokohama, Kanagawa 2360001, Japan
关键词
isotropic turbulence; multiphase flow; particle; fluid flow; PREFERENTIAL CONCENTRATION; AEROSOL-PARTICLES; HEAVY-PARTICLES;
D O I
10.1017/jfm.2020.672
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Inertial particle data from three-dimensional direct numerical simulations of particle-laden homogeneous isotropic turbulence at high Reynolds number are analysed using Voronoi tessellation of the particle positions and considering different Stokes numbers. A finite-time measure to quantify the divergence of the particle velocity by determining the volume change rate of the Voronoi cells is proposed. For inertial particles, the probability distribution function of the divergence deviates from that for fluid particles. Joint probability distribution functions of the divergence and the Voronoi volume illustrate that the divergence is most prominent in cluster regions and less pronounced in void regions. For larger volumes, the results show negative divergence values which represent cluster formation (i.e. particle convergence) and, for small volumes, the results show positive divergence values which represents cluster destruction/void formation (i.e. particle divergence). Moreover, when the Stokes number increases the divergence takes larger values, which gives some evidence why fine clusters are less observed for large Stokes numbers.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Model for radiated sound from high-Reynolds-number turbulence source
    Zhou, Y
    Hayder, ME
    Rubinstein, R
    JOURNAL OF AIRCRAFT, 2000, 37 (06): : 1113 - 1115
  • [22] ONE-EXPONENT SCALING FOR VERY HIGH-REYNOLDS-NUMBER TURBULENCE
    NELKIN, M
    BELL, TL
    PHYSICAL REVIEW A, 1978, 17 (01): : 363 - 369
  • [23] Length scales in wall-bounded high-Reynolds-number turbulence
    Carlotti, P
    Drobinski, P
    JOURNAL OF FLUID MECHANICS, 2004, 516 : 239 - 264
  • [24] Intermittency feature of shear stress fluctuation in high-Reynolds-number turbulence
    Tsuji, Y
    Dhruva, B
    PHYSICS OF FLUIDS, 1999, 11 (10) : 3017 - 3025
  • [25] Influence of Reynolds number on the motion of settling, bidisperse inertial particles in turbulence
    Momenifar, Mohammadreza
    Dhariwal, Rohit
    Bragg, Andrew D.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (05):
  • [26] Mixed velocity-passive scalar statistics in high-Reynolds-number turbulence
    Mydlarski, L
    JOURNAL OF FLUID MECHANICS, 2003, 475 : 173 - 203
  • [27] Fractal iso-level sets in high-Reynolds-number scalar turbulence
    Iyer, Kartik P.
    Schumacher, Joerg
    Sreenivasan, Katepalli R.
    Yeung, P. K.
    PHYSICAL REVIEW FLUIDS, 2020, 5 (04):
  • [28] INERTIAL SUBRANGE CONSTANTS FOR HIGH REYNOLDS-NUMBER TURBULENCE
    MCCONNEL.S
    GIBSON, CH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1075 - 1075
  • [29] Turbulence modeling for computing viscous high-Reynolds-number flows on unstructured meshes
    Liu, CH
    Li, Y
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (40-41) : 5325 - 5339
  • [30] On the onset of high-Reynolds-number grid-generated wind tunnel turbulence
    Mydlarski, L.
    Warhaft, Z.
    Journal of Fluid Mechanics, 1996, 320 : 331 - 368