Divergence and convergence of inertial particles in high-Reynolds-number turbulence

被引:13
|
作者
Oujia, Thibault [1 ,2 ]
Matsuda, Keigo [1 ,2 ,3 ]
Schneider, Kai [1 ,2 ]
机构
[1] Aix Marseille Univ, Inst Math Marseille I2M, CNRS, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[2] Cent Marseille, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[3] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res Inst Value Added Informat Generat VAiG, Kanazawa Ku, 3173-25 Showa Machi, Yokohama, Kanagawa 2360001, Japan
关键词
isotropic turbulence; multiphase flow; particle; fluid flow; PREFERENTIAL CONCENTRATION; AEROSOL-PARTICLES; HEAVY-PARTICLES;
D O I
10.1017/jfm.2020.672
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Inertial particle data from three-dimensional direct numerical simulations of particle-laden homogeneous isotropic turbulence at high Reynolds number are analysed using Voronoi tessellation of the particle positions and considering different Stokes numbers. A finite-time measure to quantify the divergence of the particle velocity by determining the volume change rate of the Voronoi cells is proposed. For inertial particles, the probability distribution function of the divergence deviates from that for fluid particles. Joint probability distribution functions of the divergence and the Voronoi volume illustrate that the divergence is most prominent in cluster regions and less pronounced in void regions. For larger volumes, the results show negative divergence values which represent cluster formation (i.e. particle convergence) and, for small volumes, the results show positive divergence values which represents cluster destruction/void formation (i.e. particle divergence). Moreover, when the Stokes number increases the divergence takes larger values, which gives some evidence why fine clusters are less observed for large Stokes numbers.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Inertial clustering of particles in high-reynolds-number turbulence
    Saw, Ewe Wei
    Shaw, Raymond A.
    Ayyalasomayajula, Sathyanarayana
    Chuang, Patrick Y.
    Gylfason, Armann
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [2] Is there scaling in high-Reynolds-number turbulence?
    Sreenivasan, KR
    Dhruva, B
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1998, (130): : 103 - 120
  • [3] Transport of inertial particles in high-Reynolds-number turbulent boundary layers
    Berk, Tim
    Coletti, Filippo
    JOURNAL OF FLUID MECHANICS, 2020, 903
  • [4] High-Reynolds-number thermal turbulence in mercury
    Naert, A
    Segawa, T
    Sano, M
    PHYSICAL REVIEW E, 1997, 56 (02) : R1302 - R1305
  • [5] High-Reynolds-number turbulence in complex fluids
    Kulmatova, D.
    Bonn, D.
    Kellay, H.
    EPL, 2013, 101 (02)
  • [7] Clusters of sedimenting high-Reynolds-number particles
    Daniel, W. Brent
    Ecke, Robert E.
    Subramanian, G.
    Koch, Donald L.
    JOURNAL OF FLUID MECHANICS, 2009, 625 : 371 - 385
  • [8] Onset of turbulence in accelerated high-Reynolds-number flow
    Zhou, Y
    Robey, HF
    Buckingham, AC
    PHYSICAL REVIEW E, 2003, 67 (05) : 1 - 056305
  • [9] Binary tree models of high-Reynolds-number turbulence
    Aurell, E
    Dormy, E
    Frick, P
    PHYSICAL REVIEW E, 1997, 56 (02): : 1692 - 1698
  • [10] Transverse structure functions in high-Reynolds-number turbulence
    Dhruva, B
    Tsuji, Y
    Sreenivasan, KR
    PHYSICAL REVIEW E, 1997, 56 (05): : R4928 - R4930