RNA polymerase III (RNA pol III) transcribes structural RNAs involved in RNA processing (U6 snRNA) and translation (tRNA), thereby regulating the growth rate of cells. Proper initiation by RNA pol III requires the transcription factor TFIIIB. Gene-external U6 snRNA transcription requires TFIIIB consisting of Bdp1, TBP, and Brf2. Transcription from the gene-internal tRNA promoter requires TFIIIB composed of Bdp1, TBP, and Brf1. TFIIIB is a target of tumor suppressors, including PTEN, ARF, p53, and RB, and RB-related pocket proteins. Breast cancer susceptibility gene 1 (BRCA1) tumor suppressor plays a role in DNA repair, cell cycle regulation, apoptosis, genome integrity, and ubiquitination. BRCA1 has a conserved amino-terminal RING domain, an activation domain 1. (AD1), and an acidic carboxyl-terminal domain (BRCA1 C-terminal region). In Saccharomyces cerevisiae, TFIIB interacts with the BRCA1 C-terminal region domain of Fcp1p, an RNA polymerase IT phosphatase. The TFIIIB subunits Brf1 and Brf2 are structurally similar to TFIIB. Hence, we hypothesize that RNA pol III may be regulated by BRCA1 via the TFII B family members Brf1 and Brf2. Here we report that: (1) BRCA1 inhibits both VAT (tRNA) and U6 snRNA RNA pol III transcription; (2) the AD1 of BRCA1 is responsible for inhibition of U6 snRNA transcription, whereas the RING domain and AD1 of BRCA1 are required for VAT transcription inhibition; and (3) overexpression of Brf1 and Brf2 alleviates inhibition of U6 snRNA and VAT transcription by BRCA1. Taken together, these data suggest that BRCA1 is a general repressor of RNA pol III transcription. (c) 2009 Elsevier Ltd. All rights reserved.