Scaling Laws for the Longitudinal Structure Function in the Atmospheric Surface Layer

被引:30
作者
Chamecki, Marcelo [1 ]
Dias, Nelson L. [2 ]
Salesky, Scott T. [3 ]
Pan, Ying [4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA
[2] Univ Fed Parana, Dept Environm Engn, Curitiba, Parana, Brazil
[3] Univ British Columbia, Dept Civil Engn, Vancouver, BC, Canada
[4] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA
[5] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
ORDER STRUCTURE FUNCTIONS; MONIN-OBUKHOV SIMILARITY; TURBULENT KINETIC-ENERGY; CONTAINING SCALES; BOUNDARY-LAYER; SPECTRA; VELOCITY; VARIANCES; BUDGETS; MODEL;
D O I
10.1175/JAS-D-16-0228.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Scaling laws for the longitudinal structure function in the atmospheric surface layer (ASL) are studied using dimensional analysis and matched asymptotics. Theoretical predictions show that the logarithmic scaling for the scales larger than those of the inertial subrange recently proposed for neutral wall-bounded flows also holds for the shear-dominated ASL composed of weakly unstable, neutral, and all stable conditions (as long as continuous turbulence exists). A 2/3 power law is obtained for buoyancy-dominated ASLs. Data from the Advection Horizontal Array Turbulence Study (AHATS) field experiment confirm these scalings, and they also show that the length scale formed by the friction velocity and the turbulent kinetic energy dissipation rate consistently outperforms the distance from the ground z as the relevant scale in all cases regardless of stability. With this new length scale, the production range of the longitudinal structure function collapses for all measurement heights and stability conditions. A new variable to characterize atmospheric stability emerges from the theory: namely, the ratio between the buoyancy flux and the TKE dissipation rate.
引用
收藏
页码:1127 / 1147
页数:21
相关论文
共 48 条
  • [1] [Anonymous], 1975, TURBULENCE
  • [2] Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer
    Banerjee, T.
    Katul, G. G.
    Salesky, S. T.
    Chamecki, M.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2015, 141 (690) : 1699 - 1711
  • [3] A Spectral Budget Model for the Longitudinal Turbulent Velocity in the Stable Atmospheric Surface Layer
    Banerjee, Tirtha
    Li, Dan
    Juang, Jehn-Yih
    Katul, Gabriel
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2016, 73 (01) : 145 - 166
  • [4] TURBULENT SPECTRA IN A STABLY STRATIFIED ATMOSPHERE
    BOLGIANO, R
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1959, 64 (12): : 2226 - 2229
  • [5] The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer
    Chamecki, M
    Dias, NL
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2004, 130 (603) : 2733 - 2752
  • [6] A universal scaling for low-order structure functions in the log-law region of smooth- and rough-wall boundary layers
    Davidson, P. A.
    Krogstad, P. -A.
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 752 : 140 - 156
  • [7] The logarithmic structure function law in wall-layer turbulence
    Davidson, PA
    Nickels, TB
    Krogstad, PÅ
    [J]. JOURNAL OF FLUID MECHANICS, 2006, 550 : 51 - 60
  • [8] Scaling of second- and higher-order structure functions in turbulent boundary layers
    de Silva, C. M.
    Marusic, I.
    Woodcock, J. D.
    Meneveau, C.
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 769 : 654 - 686
  • [9] DEARDORFF JW, 1970, J ATMOS SCI, V27, P1211, DOI 10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO
  • [10] 2